Зависит от множества факторов одним. Бинарные отношения

Пусть R – бинарное отношение на множестве X. Отношение R называется рефлексивным , если (x, x) Î R для всех x Î X; симметричным – если из (x, y) Î R следует (y, x) Î R; транзитивным числу 23 соответствует вариант 24 если (x, y) Î R и (y, z) Î R влекут (x, z) Î R.

Пример 1

Будем говорить, что x Î X имеет общее с элементом y Î X, если множество
x Ç y не пусто. Отношение иметь общее будет рефлексивным и симметричным, но не транзитивным.

Отношением эквивалентности на X называется рефлексивное, транзитивное и симметричное отношение. Легко видеть, что R Í X ´ X будет отношением эквивалентности тогда и только тогда, когда имеют место включения:

Id X Í R (рефлексивность),

R -1 Í R (симметричность),

R ° R Í R (транзитивность).

В действительности эти три условия равносильны следующим:

Id X Í R, R -1 = R, R ° R = R.

Разбиением множества X называется множество А попарно непересекающихся подмножеств a Í X таких, что UA = X. С каждым разбиением А можно связать отношение эквивалентности ~ на X, полагая x ~ y, если x и y являются элементами некоторого a Î A.

Каждому отношению эквивалентности ~ на X соответствует разбиение А, элементами которого являются подмножества, каждое из которых состоит из находящихся в отношении ~. Эти подмножества называются классами эквивалентности . Это разбиение А называется фактор-множеством множества X по отношению ~ и обозначается: X/~.

Определим отношение ~ на множестве w натуральных чисел, полагая x ~ y, если остатки от деления x и y на 3 равны между собой. Тогда w/~ состоит из трёх классов эквивалентности, соответствующих остаткам 0, 1 и 2.

Отношение порядка

Бинарное отношение R на множестве X называется антисимметричным , если из x R y и y R x следует: x = y. Бинарное отношение R на множестве X называется отношением порядка , если оно рефлексивно, антисимметрично и транзитивно. Легко видеть, что это равносильно выполнению следующих условий:

1) Id X Í R (рефлексивность),

2) R Ç R -1 (антисимметричность),

3) R ° R Í R (транзитивность).

Упорядоченная пара (X, R), состоящая из множества X и отношения порядка R на X, называется частично упорядоченным множеством .

Пример 1

Пусть X = {0, 1, 2, 3}, R = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}.

Поскольку R удовлетворяет условиям 1 – 3, то (X, R) – частично упорядоченное множество. Для элементов x = 2, y = 3, неверно ни x R y, ни y R x. Такие элементы называют несравнимыми . Обычно отношение порядка обозначают £. В приведенном примере 0 £ 1 и 2 £ 2, но неверно, что 2 £ 3.


Пример 2

Пусть < – бинарное отношение строгого неравенства на множестве w натуральных чисел, рассмотренное в разд. 1.2. Тогда объединение отношений = и < является отношением порядка £ на w и превращает w в частично упорядоченное множество.

Элементы x, y Î X частично упорядоченного множества (X, £) называются сравнимыми , если x £ y либо y £ x.

Частично упорядоченное множество (X, £) называется линейно упорядоченным или цепью , если любые два его элемента сравнимы. Множество из примера 2 будет линейно упорядоченным, а из примера 1 – нет.

Подмножество A Í X частично упорядоченного множества (X, £) называется ограниченным сверху , если существует такой элемент x Î X, что a £ x для всех a Î A. Элемент x Î X называется наибольшим в X, если y £ x для всех y Î X. Элемент x Î X называется максимальным, если нет отличных от x элементов y Î X, для которых x £ y. В примере 1 элементы 2 и 3 будут максимальными, но не наибольшими. Аналогично определяются ограничение снизу подмножества, наименьший и минимальный элементы. В примере 1 элемент 0 будет и наименьшим и минимальным. В примере 2 этими свойствами также обладает 0, но в (w, £) нет ни наибольшего, ни максимального элемента.

(то есть которое обладает следующими свойствами: каждый элемент множества эквивалентен сам себе; если x эквивалентно y , то y эквивалентно x ; если x эквивалентно y , а y эквивалентно z , то x эквивалентно z ).

Тогда множество всех классов эквивалентности называется фактормножеством и обозначается . Разбиение множества на классы эквивалентных элементов называется его факторизацией .

Отображение из X в множество классов эквивалентности называется факторотображением .

Примеры

Факторизацию множества разумно применять для получения нормированных пространств из полунормированных, пространств со скалярным произведением из пространств с почти скалярным произведением и пр. Для этого вводится соответственно норма класса, равная норме произвольного его элемента, и скалярное произведение классов как скалярное произведение произвольных элементов классов. В свою очередь отношение эквивалентности вводится следующим образом (например для образования нормированного факторпространства): вводится подмножество исходного полунормированного пространства, состоящее из элементов с нулевой полунормой (кстати, оно линейно, то есть является подпространством) и считается, что два элемента эквивалентны, если разность их принадлежит этому самому подпространству.

Если для факторизации линейного пространства вводится некоторое его подпространство и считается, что если разность двух элементов исходного пространства принадлежит этому подпространству, то эти элементы эквивалентны, то фактормножество является линейным пространством и называется факторпространством.

Примеры

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Фактормножество" в других словарях:

    Логический принцип, лежащий в основе определений через абстракцию (См. Определение через абстракцию): любое Отношение типа равенства, определённое на некотором исходном множестве элементов, разбивает (делит, классифицирует) исходное… …

    Форма мышления, отражающая существенные свойства, связи и отношения предметов и явлений в их противоречии и развитии; мысль или система мыслей, обобщающая, выделяющая предметы некоторого класса по определённым общим и в совокупности… … Большая советская энциклопедия

    Когомологии Галуа группы. Если М абелева группа и группа Галуа расширения, действующая на М, то когомологии Галуа есть группы когомологии определяемые комплексом состоит из всех отображений, a d кограничный оператор (см. Когомологии групп).… … Математическая энциклопедия

    Конструкция, к рая впервые появилась в теории множеств, а затем стала широко использоваться в алгебре, топологии и других областях математики. Важный частный случай И. п. это И. п. направленного семейства однотипных математических структур. Пусть … Математическая энциклопедия

    Точки хотносительно группы G, действующей на множестве X(слева), множество Множество является подгруппой в G и наз. стабилизатором, или стационарной подгруппой точки хотносительно G. Отображение индуцирует биекцию между G/Gx и орбитой G(x). О.… … Математическая энциклопедия

    В этой статье слишком короткое вступление. Пожалуйста, дополните вводную секцию, кратко раскрывающую тему статьи и обобщающую её содержимое … Википедия

    Эта статья об алгебраической системе. О разделе математической логики, изучающем высказывания и операции над ними, см. Алгебра логики. Булевой алгеброй называется непустое множество A с двумя бинарными операциями (аналог конъюнкции),… … Википедия

    Пусть на множестве задано отношение эквивалентности. Тогда множество всех классов эквивалентности называется фактор множеством и обозначается. Разбиение множества на классы эквивалентных элементов называется его факторизацией. Отображение из в… … Википедия

    Под направленным отрезком в геометрии понимают упорядоченную пару точек, первая из которых точка A называется его началом, а вторая B его концом. Содержание 1 Определение … Википедия

    В различных разделах математики ядром отображения называется некоторое множество kerf, в некотором смысле характеризующее отличие f от инъективного отображения. Конкретное определение может различаться, однако для инъективного отображения f… … Википедия

∼ {\displaystyle \sim } . Тогда множество всех классов эквивалентности называется фактормножеством и обозначается . Разбиение множества на классы эквивалентных элементов называется его факторизацией .

Отображение из X {\displaystyle X} в множество классов эквивалентности X / ∼ {\displaystyle X/\!\sim } называется факторотображением . Благодаря свойствам отношения эквивалентности, разбиение на множества единственно. Это означает, что классы, содержащие ∀ x , y ∈ X {\displaystyle \forall x,\;y\in X} , либо не пересекаются, либо совпадают полностью. Для любого элемента x ∈ X {\displaystyle x\in X} однозначно определён некоторый класс из X / ∼ {\displaystyle X/\!\sim } , иными словами существует сюръективное отображение из X {\displaystyle X} в X / ∼ {\displaystyle X/\!\sim } . Класс, содержащий x {\displaystyle x} , иногда обозначают [ x ] {\displaystyle [x]} .

Если множетво снабжено структурой, то часто отображение X → X / ∼ {\displaystyle X\to X/\!\sim } можно использовать чтобы снабдить фактормножество X / ∼ {\displaystyle X/\!\sim } той же структурой, например топологией. В этом случае множество X / ∼ {\displaystyle X/\!\sim } с индуцированной структурой называется факторпространством .

Энциклопедичный YouTube

    1 / 4

    ✪ 3. Классы эквивалентности

    ✪ Теория множеств Лекция 3 Часть 1

    ✪ Теория множеств Лекция 3 Часть 2

    ✪ Теория множеств Лекция 3 Часть 3

    Субтитры

Факторпространство по подпространству

Часто отношение эквивалентности вводят следующим образом. Пусть X {\displaystyle X} - линейное пространство , а L {\displaystyle L} - некоторое линейное подпространство. Тогда два элемента x , y ∈ X {\displaystyle x,\;y\in X} таких, что x − y ∈ L {\displaystyle x-y\in L} , называются эквивалентными . Это обозначается x ∼ L y {\displaystyle x\,{\overset {L}{\sim }}\,y} . Получаемое в результате факторизации пространство называют факторпространством по подпространству L {\displaystyle L} . Если X {\displaystyle X} разлагается в прямую сумму X = L ⊕ M {\displaystyle X=L\oplus M} , то существует изоморфизм из M {\displaystyle M} в X / ∼ L {\displaystyle X/\,{\overset {L}{\sim }}} . Если X {\displaystyle X} - конечномерное пространство , то факторпространство X / ∼ L {\displaystyle X/\,{\overset {L}{\sim }}} также является конечномерным и dim ⁡ X / ∼ L = dim ⁡ X − dim ⁡ L {\displaystyle \dim X/\,{\overset {L}{\sim }}=\dim X-\dim L} .

Примеры

. Можно рассмотреть фактормножество X / ∼ {\displaystyle X/\!\sim } . Функция f {\displaystyle f} задаёт естественное взаимноднозначное соответствие между X / ∼ {\displaystyle X/\!\sim } и Y {\displaystyle Y} .

Факторизацию множества разумно применять для получения нормированных пространств из полунормированных, пространств со скалярным произведением из пространств с почти скалярным произведением и пр. Для этого вводится соответственно норма класса, равная норме произвольного его элемента, и скалярное произведение классов как скалярное произведение произвольных элементов классов. В свою очередь отношение эквивалентности вводится следующим образом (например для образования нормированного факторпространства): вводится подмножество исходного полунормированного пространства, состоящее из элементов с нулевой полунормой (кстати, оно линейно, то есть является подпространством) и считается, что два элемента эквивалентны, если разность их принадлежит этому самому подпространству.

Если для факторизации линейного пространства вводится некоторое его подпространство и считается, что если разность двух элементов исходного пространства принадлежит этому подпространству, то эти элементы эквивалентны, то фактормножество является линейным пространством и называется факторпространством.

Пусть R – бинарное отношение на множестве X. Отношение R называется рефлексивным , если (x, x) Î R для всех x Î X; симметричным – если из (x, y) Î R следует (y, x) Î R; транзитивным числу 23 соответствует вариант 24 если (x, y) Î R и (y, z) Î R влекут (x, z) Î R.

Пример 1

Будем говорить, что x Î X имеет общее с элементом y Î X, если множество
x Ç y не пусто. Отношение иметь общее будет рефлексивным и симметричным, но не транзитивным.

Отношением эквивалентности на X называется рефлексивное, транзитивное и симметричное отношение. Легко видеть, что R Í X ´ X будет отношением эквивалентности тогда и только тогда, когда имеют место включения:

Id X Í R (рефлексивность),

R -1 Í R (симметричность),

R ° R Í R (транзитивность).

В действительности эти три условия равносильны следующим:

Id X Í R, R -1 = R, R ° R = R.

Разбиением множества X называется множество А попарно непересекающихся подмножеств a Í X таких, что UA = X. С каждым разбиением А можно связать отношение эквивалентности ~ на X, полагая x ~ y, если x и y являются элементами некоторого a Î A.

Каждому отношению эквивалентности ~ на X соответствует разбиение А, элементами которого являются подмножества, каждое из которых состоит из находящихся в отношении ~. Эти подмножества называются классами эквивалентности . Это разбиение А называется фактор-множеством множества X по отношению ~ и обозначается: X/~.

Определим отношение ~ на множестве w натуральных чисел, полагая x ~ y, если остатки от деления x и y на 3 равны между собой. Тогда w/~ состоит из трёх классов эквивалентности, соответствующих остаткам 0, 1 и 2.

Отношение порядка

Бинарное отношение R на множестве X называется антисимметричным , если из x R y и y R x следует: x = y. Бинарное отношение R на множестве X называется отношением порядка , если оно рефлексивно, антисимметрично и транзитивно. Легко видеть, что это равносильно выполнению следующих условий:

1) Id X Í R (рефлексивность),

2) R Ç R -1 (антисимметричность),

3) R ° R Í R (транзитивность).

Упорядоченная пара (X, R), состоящая из множества X и отношения порядка R на X, называется частично упорядоченным множеством .

Пример 1

Пусть X = {0, 1, 2, 3}, R = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}.

Поскольку R удовлетворяет условиям 1 – 3, то (X, R) – частично упорядоченное множество. Для элементов x = 2, y = 3, неверно ни x R y, ни y R x. Такие элементы называют несравнимыми . Обычно отношение порядка обозначают £. В приведенном примере 0 £ 1 и 2 £ 2, но неверно, что 2 £ 3.


Пример 2

Пусть < – бинарное отношение строгого неравенства на множестве w натуральных чисел, рассмотренное в разд. 1.2. Тогда объединение отношений = и < является отношением порядка £ на w и превращает w в частично упорядоченное множество.

Элементы x, y Î X частично упорядоченного множества (X, £) называются сравнимыми , если x £ y либо y £ x.

Частично упорядоченное множество (X, £) называется линейно упорядоченным или цепью , если любые два его элемента сравнимы. Множество из примера 2 будет линейно упорядоченным, а из примера 1 – нет.

Подмножество A Í X частично упорядоченного множества (X, £) называется ограниченным сверху , если существует такой элемент x Î X, что a £ x для всех a Î A. Элемент x Î X называется наибольшим в X, если y £ x для всех y Î X. Элемент x Î X называется максимальным, если нет отличных от x элементов y Î X, для которых x £ y. В примере 1 элементы 2 и 3 будут максимальными, но не наибольшими. Аналогично определяются ограничение снизу подмножества, наименьший и минимальный элементы. В примере 1 элемент 0 будет и наименьшим и минимальным. В примере 2 этими свойствами также обладает 0, но в (w, £) нет ни наибольшего, ни максимального элемента.

Пусть (X, £) – частично упорядоченное множество, A Í X – подмножество. Отношение на А, состоящее из пар (a, b) элементов a, b Î A, для которых a £ b, будет отношением порядка на А. Это отношение обозначают тем же символом: £. Таким образом, (A, £) – частично упорядоченное множество. Если оно является линейно упорядоченным, то будем говорить, что А – цепь в (X, £).

Принцип максимальности

Некоторые математические утверждения невозможно доказать без аксиомы выбора. Про эти утверждения говорят, что они зависят от аксиомы выбора или справедливы в теории ZFC , на практике вместо аксиомы выбора для доказательства используют обычно либо аксиому Цермело, либо лемму Куратовского-Цорна, либо любое другое утверждение, равносильное аксиоме выбора.

Лемма Куратовского-Цорна . Если каждая цепь в частично упорядоченном множестве (X, £) ограничена сверху, то в X есть по крайней мере один максимальный элемент.

Эта лемма равносильна аксиоме выбора, и поэтому её можно принять в качестве аксиомы.

Теорема. Для любого частично упорядоченного множества (X, £) существует отношение, содержащее отношение £ и превращающее X в линейно упорядоченное множество.

Доказательство . Множество всех отношений порядка, содержащих отношение £, упорядочено отношением включения Í. Поскольку объединение цепи отношений порядка будет отношением порядка, то по лемме Куратовского-Цорна существует максимальное отношение R, такое, что x £ y влечет x R y. Докажем, что R – отношение, линейно упорядочивающее X. Предположим противное: пусть существуют a, b Î X такие, что ни (a, b), ни (b, a) не принадлежат R. Рассмотрим отношение:

R¢ = R È {(x, y): x R a и b R y}.

Оно получается добавлением пары (a, b) к R и пар (x, y), которые должны быть добавлены к R¢ из условия, что R¢ – отношение порядка. Легко видеть, что R¢ рефлексивно, антисимметрично и транзитивно. Получаем R Ì R¢, противоречащее максимальности R, следовательно, R – искомое отношение линейного порядка.

Линейно упорядоченное множество X называется вполне упорядоченным, если всякое его непустое подмножество A Í X содержит наименьший элемент a Î A. Лемма Куратовского-Цорна и аксиома выбора эквивалентны также следующему утверждению:

Аксиома Цермело . Для каждого множества существует отношение порядка, превращающее его во вполне упорядоченное множество.

Например, множество w натуральных чисел является вполне упорядоченным. Принцип индуктивности обобщается следующим образом:

Трансфинитная индукция . Если (X, £) – вполне упорядоченное множество и F(x) – свойство его элементов, верное для наименьшего элемента x 0 Î X и такое, что из истинности F(y) для всех y < z следует истинность F(z), то F(x) верно для всех x Î X.

Здесь y < z означает, что у £ z, но y ¹ z. Действительно, в противном случае среди x Î X, не обладающих свойством F(x), можно выбрать наименьший элемент x 1 , и выполнение F(y) для всех y < x 1 приводит к выполнению F(x 1), противоречащему предположению.

Понятие мощности

Пусть f: X à Y и g: Y à Z – отображения множеств. Поскольку f и g – отношения, то определена их композиция g ° f(x) = g(f(x)). Если h: Z à T – отображение множеств, то h ° (g ° f) = (h ° g) ° f. Отношения Id X и Id Y – функции, стало быть, определены композиции Id Y ° f = f ° Id x = f. При X = Y определим f 2 = f ° f, f 3 = f 2 ° f, …, f n+1 = f n ° f.

Отображение f: X àY называется инъекцей , если для любых элементов x 1 ¹ x 2 множества X справедливо f(x 1) ¹ f(x 2). Отображение f называется сюръекцией , если для каждого y ÎY существует такой x Î X, что f(x) = y. Если f является и сюръекцией, и инъекцией, то f называется биекцией . Легко видеть, что f – биекция тогда и только тогда, когда обратное отношение f -1 Í Y ´ X является функцией.

Будем говорить, что справедливо равенство |X| = |Y|, если существует биекция между X и Y. Положим |X| £ |Y|, если существует инъекция f: X à Y.

Теорема Кантора-Шредера-Бернштейна . Если |X| £ |Y| и |Y| £ |X| , то |X| = |Y|.

Доказательство . По условию, существуют инъекции f: X à Y и g: Y à X. Пусть A = g¢¢Y = Img – образ множества Y относительно отображения g. Тогда

(X \ A) Ç (gf)¢¢(X \ A) = Æ,

(gf)¢¢(X \ A) Ç (gf) 2 ¢¢(X \ A) = Æ, …,

(gf) n ¢¢(X \ A) Ç (gf) n+1 ¢¢(X \ A) = Æ, …

Рассмотрим отображение j: X à A, заданное как j(x) = gf(x), при

x Î (X \ A) È (gf)¢¢(X \ A) È (gf) 2 ¢¢(X \ A) È …, и j(x) = x в остальных случаях. Легко видеть, что j – биекция. Искомая биекция между X и Y будет равна g -1 ° j.

Антиномия Кантора

Положим |X| < |Y|, если |X| £ |Y| и не существует биекции между X и Y.

Теорема Кантора . Для любого множества X справедливо |X| < |P(X)|, где P(X) – множество всех подмножеств множества X.

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.