Типовое звено сау с передаточной функцией. Типовые звенья линейных сау

Алгоритмические звенья, которые описываются обыкновенными дифференциальными уравнениями первого и второго порядка, получили название типовых динамических звеньев .

Типовые динамические звенья являются основными составными частями алгоритмических структур непрерывных систем управления, знание их характеристик существенно облегчает анализ таких систем.

Классификацию удобно осуществить, рассматривая различные частные формы дифференциального уравнения:

наименование

примечания

Безынерционное

(пропорциональное)

Статическое

элементарное

Инерционное первого порядка

(апериодическое)

Статическое

инерционное

Инерционное второго порядка

(апериодическое)

Т 1 2Т 2 Статическое

инерционное

Инерционное второго порядка

(колебательное)

Статическое

инерционное

Идеальное интегрирующее

элементарное

Реальное интегрирующее

инерционное

Идеальное дифференцирующее

элементарное

Реальное дифференцирующее

инерционное

Изодромное

(пропорционально-

интегрирующее)

Форсирующее

(пропорционально-

дифференцирующее)

Статическое

Упругое (интегро-

дифференцирующее,

реально-форсирующее)

-преобладают

интегрирующие свойства

-преобладают

дифференцирующие

свойства

Статическое, инерционное

Звенья, у которых а 2 0 и в 1 0 обладают статизмом, т.е. однозначной связью между входной и выходной переменными в статическом режиме. Звенья – статические, или позиционные.

Звенья, у которых 2 из трех коэффициентов а 2 0, а 1 0, а 0 0, обладают инерционностью (замедлением).

У звеньев 1,5,7 только 2 коэффициента 0. Они являются простейшими, или элементарными. Все остальные типовые звенья могут быть образованы из элементарных путем последовательного, параллельного и встречно- параллельного соединения.

Апериодическое звено

Динамика процесса описывается следующим уравнением:

где k  передаточный коэффициент или коэффициент усиления, Т  постоянная времени, характеризующая инерционность звена.

1. Переходная характеристика:

1)

2) В точке ноль строят касательную переходной характеристики, определяют точку пересечения с линией k . Абсцисса этой точки и есть постоянная времени.

2. Импульсная переходная характеристика, или функция веса, звена может быть получена путем дифференцирования функции h (t ) :

3. Передаточная функция:

П

рименим преобразование Лапласа к уравнению:

Структурная схема звена при этом будет выглядеть следующим образом:

Подставляя в передаточную функцию p = j , получим амплитудно-фазо-частотную функцию:

5. АЧХ:

График АЧХ строится по точкам:

Здесь с – частота сопряжения.

Гармонические сигналы малой частоты ( < с ) пропускаются звеном хорошо – с отношением амплитуд выходной и входной величин, близким к передаточному коэффициенту k . Сигналы большой частоты ( > с ) плохо пропускаются звеном: отношение амплитуд существенно < коэффициента k . Чем больше постоянная времени Т , т.е. чем больше инерционность звена, тем меньше АЧХ вытянута вдоль оси частот, или, тем у же полоса пропускания частот.

Т.о. инерционное звено первого порядка по своим частотным свойствам является фильтром низкой частоты .

ФЧХ инерционного звена первого порядка равна:

Чем больше частота входного сигнала, тем больше отставание по фазе выходной величины от входной. Максимально возможное отставание равно 90 0 . При частоте с = 1 сдвиг фаз равен –45 0 .

Рассмотрим теперь ЛАЧХ звена. Точная ЛАЧХ описывается выражением:

При построении ЛАЧХ апериодического звена прибегают к асимптотическим методам или, другими словами, строят асимптотический график ЛАЧХ.

Значение сопрягающей частоты w c , при которой пересекаются обе асимптоты, найдем из условия


Посмотрим, что будет при построении не асимптотической, а точной ЛАЧХ:

Точная характеристика (ЛАЧХ) в точке среза будет меньше асимптотической ЛАЧХ на величину
.

Существует так называемое неустойчивое апериодическое звено

Колебательное звено

Динамика процессов в колебательном звене описывается уравнением:

,

где k  коэффициент усиления звена; Т  постоянная времени колебательного звена;  коэффициент демпфирования звена (или коэффициент затухания).

В зависимости от величины коэффициента демпфирования различают четыре типа звеньев:

а) колебательное 0<<1;

б) апериодическое звено II порядка>1;

в) консервативное звено =0;

г) неустойчивое колебательное звено <0.

1. Переходная характеристика колебательного звена:

А

мплитуды первых двух колебаний определяют величину
, или её можно найти, определив постоянную времени экспоненты, с которой происходит затухание

Чем ближе коэффициент затухания к единице, тем меньше амплитуда колебаний, чем меньше Т , тем быстрее устанавливаются переходные процессы.


При >1 колебательное звено называется апериодическим звеном второго порядка (последовательное соединение двух апериодических звеньев с постоянными времени Т 1 и Т 2 ).

, или можно записать так
.

Здесь 0 – величина, обратная постоянной времени (
);
.

Такое звено в литературе называют консервативным звеном .

Все переходные характеристики будут колебаться вдоль величины k .

2. Импульсная переходная характеристика:

3

.Передаточная функция:

График АФЧХ будет выглядеть следующим образом:

Это характеристика для колебательного звена и для апериодического звена второго порядка.

Для апериодического звена -
.

-

АФЧХ для консервативного звена.

.

А

ЧХ при частоте
имеет максимум (резонансный пик), равный

Отсюда видно, что, чем меньше коэффициент , тем больше резонансный пик.

Т

.о., по графику АЧХ видно, что колебательное звено, как и все инерционные звенья, хорошо пропускает сигналы низкой частоты и плохо – сигналы высокой частоты; если частота гармонического входного сигнала близка к частоте собственных колебаний звена, то отношение амплитуды выходного сигнала к амплитуде входного больше передаточного коэффициента k .

Для случая б) график будет аналогичным, только перегиб будет чуть меньше (штриховая линия на графике).

Где

Асимптотическая ЛАЧХ колебательного звена:

Определяем наклон на втором участке:

Шаблон к графику а) дается от 0 до 1 шагом в 0,1.

К

онсервативное звено:

Структурная схема колебательного звена будет выглядеть следующим образом:

Примером колебательного звена является любая RLС- цепь.

Общие свойства статических звеньев

    В установившемся режиме выходная переменная y однозначно связана с входной переменной x уравнением статики

    Передаточный коэффициент звена связан с передаточной функцией соотношением

    Звенья являются звеньями низкой частоты (кроме безынерционного), т.е. хорошо пропускают низкочастотные сигналы и плохо – высокочастотные, в режиме гармонических колебаний создают отрицательные фазовые сдвиги.

Типовые динамические звенья и их характеристики


Динамическим звеном называется элемент системы, обладающий определенными динамическими свойствами.

Любую систему можно представить в виде ограниченного набора типовых элементарных звеньев, которые могут быть любой природы, конструкции и назначения. Передаточную функцию любой системы можно представить в виде дробно-рациональной функции:

(1)

Таким образом, передаточную функцию любой системы можно представить как произведение простых множителей и простых дробей. Звенья, передаточные функции которых имеют вид простых множителей или простых дробей, называют типовыми или элементарными звеньями. Типовые звенья различаются по виду их передаточной функции, определяющей их статические и динамические свойства.

Как видно из разложения, можно выделить следующие звенья:

1. Усилительное (безынерционное).

2. Дифференцирующее.

3. Форсирующее звено 1-го порядка.

4. Форсирующее звено 2-го порядка.

5. Интегрирующее.

6. Апериодическое (инерционное).

7. Колебательное.

8. Запаздывающее.

При исследовании систем автоматического управления она представляется в виде совокупности элементов не по их функциональному назначению или физической природе, а по их динамическим свойствам. Для построения систем управления необходимо знание характеристик типовых звеньев. Основными характеристиками звеньев являются дифференциальное уравнение и передаточная функция.

Рассмотрим основные звенья и их характеристики.

Усилительное звено (безынерционное, пропорциональное). Усилительным называют звено, которое описывается уравнением:

или передаточной функцией:

(3)

При этом переходная функция усилительного звена (рис. 1а) и его фун-кция веса (рис. 1б) соответственно имеют вид:


Частотные характеристики звена (рис. 2) можно получить по его передаточной функции, при этом АФХ, АЧХ и ФЧХ определяются следующими соотношениями:


.

Логарифмическая частотная характеристика усилительного звена (рис. 3) определяются соотношением

.

Примеры звена:

1. Усилители, например, постоянного тока (рис. 4а).

2. Потенциометр (рис. 4б).



3. Редуктор (рис. 5).


Апериодическое (инерционное) звено . Апериодическим называют звено, которое описывается уравнением:

или передаточной функцией:

(5)

где Т – постоянная времени звена, которая характеризует его инерционность, k – коэффициент передачи.

При этом переходная функция апериодического звена (рис. 6а) и его функция веса (рис. 6б) соответственно имеют вид:



Частотные характеристики апериодического звена (рис. 7а-в) опреде-ляются соотношениями:


Логарифмические частотные характеристики звена (рис. 8) определяются по формуле



Это асимптотические логарифмические характеристики, истинная характеристика совпадает с ней в области больших и малых частот, а максимальная погрешность будет в точке, соответствующей сопряженной частоте, и равна около 3 дБ. На практике обычно используют асимптотические характеристики. Их основное преимущество в том, что при изменении параметров системы (k и T ) характеристики перемещаются параллельно самим себе.

Примеры звена:

1. Апериодическое звено может быть реализовано на операционных усилителях (рис. 9).


ÆÆ

ЛЕКЦИЯ 3.

Частотные характеристики.

Частотные характеристики описывают установившиеся вынужденные колебания на выходе звена, вызванные гармоническим воздействием на входе. Рассмотрим такой режим.

Пусть на вход звена (рис.2.6,а) подано гармоническое воздействие

где x max – амплитуда, а ω – угловая частота этого воздействия.

По окончании переходного процесса на выходе звена будут существовать гармонические колебания с той же частотой, что и входные колебания, но отличающиеся в общем случае по амплитуде и фазе. Т.е. в установившемся режиме выходная величина звена

,

где y max – амплитуда выходных установившихся колебаний.

При фиксированной амплитуде входных колебаний амплитуда и фаза установившихся колебаний на выходе звена зависят от частоты колебаний. Если постепенно увеличивать от нуля частоту колебаний и определять установившиеся значения амплитуды и фазы выходных колебаний для разных частот, можно получить зависимость от частоты отношения амплитуд A = y max / x max и сдвига фаз φ выходных и входных установившихся колебаний.

Эти зависимости называются соответственно А(ω) амплитудной частотной характеристикой (АЧХ) и φ(ω) – фазовой частотной характеристикой (ФЧХ). Примерный вид этих характеристик у обычных инерционных звеньев изображен на рис.3.1,а и б. Как показано на этих рисунках, у таких звеньев в силу их инерционности амплитудная частотная характеристика по мере увеличения частоты в конце концов спадает до нуля. При этом, чем менее инерционно звено, тем длиннее его амплитудная частотная характеристика, т.е. тем больше полоса пропускаемых звеном частот, или, просто, его полоса пропускания.

Теоретически частотная характеристика продолжается до бесконечности, но практически полоса пропускания оценивается значением частоты, при котором отношение амплитуд А = 0,707, и при дальнейшем повышении частоты не изменяется (считается, что в диапазоне от –ω П до +ω П элемент системы управления пропускает гармонический сигнал без заметного ослабления). Полоса пропускания Δω П = 2ω П. Наличие максимума у АЧХ говорит о резонансных свойствах звена. Частота, соответствующая максимуму амплитудной характеристики, называется резонансной (ω р). Частота, на которой коэффициент усиления входного сигнала равен единице, называется частотой среза ω с.

Фазовая частотная характеристика показывает фазовые сдвиги, вносимые элементом системы управления на различных частотах. У обычных инерционных звеньев, как показано на рис.3.1,б, при положительных ω ФЧХ всегда отрицательна (φ < 0), т.е. выходные колебания отстают по фазе от входных, и это отставание растет с частотой.

Обыкновенные амплитудная и фазовая частотные характеристики можно объединить в одну характеристику – амплитудно – фазовую частотную характеристику (АФЧХ), используя А(ω) и φ(ω) в качестве полярных координат (рис.3.2). Строится она на комплексной плоскости. Каждая точка АФЧХ соответствует определенному значению частоты ω. Совокупность всех точек при изменении частоты от нуля до бесконечности представляет собой непрерывную линию (которая называется годографом), соответствующую частотной передаточной функции W (j ω). Значения ω для конечного количества точек характеристики наносятся вдоль характеристики, как показано на рис.3.2. Имея АФЧХ, можно по этим точкам построить характеристики А(ω) и φ(ω) .

АФЧХ строится как для положительных, так и для отрицательных частот. При замене в W (j ω) ω на – ω получается сопряженная комплексная величина. Поэтому АФЧХ для отрицательных частот является зеркальным отражением АФЧХ для положительных частот относительно вещественной оси. На рис. 3.2 АФЧХ для отрицательных частот показана пунктирной линией.

АФЧХ можно строить и в прямоугольной системе координат – в комплексной плоскости. При этом координатами будут показанные на рис.3.2 проекции U и V вектора А на соответствующие оси. Зависимости U(ω) и V(ω) называются соответственно действительной (вещественной) и мнимой частотными характеристиками.

В дальнейшем для краткости будем в названии различных частотных характеристик опускать слово «частотная», говоря просто об амплитудной характеристике, фазовой характеристике.

При исследовании САУ амплитудную и фазовую частотные характеристики удобно строить в логарифмических координатах .

Это связано с двумя обстоятельствами. Во-первых , в логарифмических координатах характеристики деформируются таким образом, что возникает возможность в подавляющем большинстве практических случаев упрощенно изображать амплитудные частотные характеристики ломаными линиями.

Второе удобство связано с построением АЧХ цепочки последовательно соединенных звеньев, т.е. в логарифмическом масштабе АЧХ цепочки звеньев равна сумме амплитудных характеристик отдельных звеньев.

АЧХ в логарифмических координатах (Рис. 3.3) строится в виде зависимости 20lg A от lg ω, называется логарифмической амплитудной характеристикой (ЛАХ), а фазовая – в виде зависимости φ от lg ω, называется логарифмической фазовой характеристикой (ЛФХ) .

Величина 20 lg A обозначается L . В качестве единицы этой величины используется децибел , равный одной десятой бела. Бел – это единица десятичного логарифма коэффициента усиления мощности сигнала, т.е. 1 бел соответствует усилению мощности в 10 раз, 2 бела – в 100 раз, 3 бела – в 1000 раз и т.д. Т.к. мощность сигнала пропорциональна квадрату амплитуды, а lg A 2 = 2 lg A , то усиление в белах, выраженное через отношение амплитуд А , равно 2 lg A . Соответственно в децибелах оно равно 20 lg A . При этом существуют следующие соотношения между значениями A и L :

А 0.001 0.01 0.1 0.316 0.89 1.12 3.16
L ,дБ -60 -40 -20 -10 -1

При применении ЛАХ логарифмическая фазовая характеристика строится в полулогарифмических координатах, т.е. в виде зависимости φ от lg ω, чтобы обе характеристики были связаны одним масштабом на оси абсцисс. Использование логарифмического масштаба на оси ординат фазовой характеристики не имеет смысла, т.к. фазовый сдвиг цепочки звеньев и так получается просто в виде суммы фазовых сдвигов на отдельных ее звеньях.

На оси абсцисс указываются либо прямо значения lg ω, либо, что практически более удобно, значения самой частоты ω. В первом случае единицей приращения lg ω является декада, соответствующая изменению частоты в 10 раз. Применяется также деление оси абсцисс на октавы. Октава соответствует изменению частоты в два раза. (Одна октава равна 0.303 декады, т.к. lg 2 = 0.303).

Заметим также, что, т.к. при использовании логарифмического масштаба точка, соответствующая ω=0, находится слева в бесконечности, логарифмические характеристики строятся не от нулевой частоты, а от достаточно малого, но конечного значения ω, которое и откладывается в точке пересечения координатных осей. Точка пересечения ЛАХ с осью абсцисс соответствует частоте среза ω с. Верхняя полуплоскость ЛАХ соответствует значениям А>1 (усиление амплитуды), а нижняя полуплоскость – значениям А<1 (ослабление амплитуды).

Аналитические выражения для рассмотренных выше частотных характеристик могут быть легко получены по передаточной функции. Если в выражение передаточной функции звена W(s) подставить s = jω , то получится комплексная величина W (), которая представляет собой функцию ω и является амплитудно-фазовой частотной (или просто частотной) характеристикой звена. Ее модуль представляет собой амплитудную частотную характеристику А(ω) , а аргумент – фазовую частотную характеристику φ(ω) .

(3.1)

Формула (3.1) определяет искомую связь передаточной функции с частотными характеристиками звена, указанную выше: модуль частотной функции W(jω) есть А(ω) , а аргумент - φ(ω) .

Если представить W(jω) не в показательной, а в алгебраической форме, т.е.

то здесь U(ω) и V(ω) будут введенными ранее действительной и мнимой частотными характеристиками, являющимися координатами амплитудно-фазовой характеристики в комплексной плоскости.

Согласно (3.1) и (3.2), связь между приведенными выше частотными характеристиками следующая:

Порядок получения выражения для перечисленных выше частотных характеристик по передаточной функции звена несложен. После подстановки в выражение для передаточной функции получаем:

,

где индексами R и Q отмечены части соответствующих комплексных величин в числителе и знаменателе.

После освобождения от мнимости в знаменателе окончательно имеем:

Типовые динамические звенья систем автоматического управления

Что такое динамическое звено? На предыдущих занятиях мы рассматривали отдельные части системы автоматического управления и называли их элементами системы автоматического управления. Элементы могут иметь различный физический вид и конструктивное оформление. Главное, что на такие элементы подается некоторый входной сигнал х(t) , и как отклик на этот входной сигнал, элемент системы управления формирует некоторый выходной сигнал у(t) . Далее мы установили, что связь между выходным и входным сигналами определяется динамическими свойствами элемента управления, которые можно представить в виде передаточной функции W(s). Так вот, динамическим звеном называется любой элемент системы автоматического управления, имеющий определенное математическое описание, т.е. для которого известна передаточная функция.

Рис. 3.4. Элемент (а) и динамическое звено (б) САУ.

Типовые динамические звенья – это минимально необходимый набор звеньев для описания системы управления произвольного вида. К типовым звеньям относятся:

§ пропорциональное звено;

§ апериодическое звено I-ого порядка;

§ апериодическое звено II-ого порядка;

§ колебательное звено;

§ интегрирующее звено;

§ идеальное дифференцирующее звено;

§ форсирующее звено I-ого порядка;

§ форсирующее звено II-ого порядка;

§ звено с чистым запаздыванием.

Пропорциональное звено

Пропорциональное звено иначе еще называется безынерционным .

Передаточная функция.

Передаточная функция пропорционального звена имеет вид:

W(s) = K где К – коэффициент усиления.


Похожая информация.


В следящих системах (рис. 1.14, а) при повороте ведущего вала на некоторый угол приемный вал также поворачивается на этот же угол. Однако приемный вал занимает новое положение не мгновенно, а с некоторым запозданием после окончания переходного процесса. Переходный процесс может быть апериодическим (рис. 2.1, а) и колебательным с затухающими колебаниями (рис. 2.1, б). Возможно, что колебания приемного вала будут незатухающими (рис. 2.1, в) или возрастающими по амплитуде (рис. 2.1, г). Последние два режима являются неустойчивыми.

Каким образом данная система будет отрабатывать то или иное изменение задающего или возмущающего воздействия, т. е. каков характер переходного процесса системы, будет ли система устойчивой или неустойчивой - эти и подобные вопросы рассматриваются в динамике систем, автоматического управления.

2.1. Динамические звенья автоматических систем

Необходимость представления элементов автоматических систем динамическими звеньями. Определение динамического звена

Для определения динамических свойств автоматической системы необходимо иметь ее математическое описание, т. е. математическую модель системы. Для этого следует составить дифференциальные уравнения элементов системы, с помощью которых описываются происходящие в них динамические процессы.

При анализе элементов автоматических систем выясняется, что разнообразные элементы, отличающиеся назначением, конструкцией, принципом действия и физическими процессами, описываются одинаковыми дифференциальными уравнениями, т. е. являются сходными по динамическим свойствам. Например, в электрической цепи и механической системе, несмотря на различную их физическую природу, динамические процессы могут описываться аналогичными дифференциальными уравнениями.

Рис. 2.1. Возможные реакции следящей системы на ступенчатое задающее воздействие.

В теории автоматического управления элементы автоматических систем с точки зрения их динамических свойств представляют с, помощью небольшого числа элементарных динамических звеньев. Под элементарным динамическим звеном понимается математическая модель искусственно выделяемой части системы, характеризуемая нексь торым простейшим алгоритмом (математическим или графическим описанием процесса).

Одним элементарным звеном иногда могут быть представлены несколько элементов системы или наоборот - один элемент может быть представлен в виде нескольких звеньев.

По направлению прохождения воздействия различают вход и выход и соответственно входную и выходную величины звена. Выходная величина звена направленного действия не оказывает влияния на входную величину. Дифференциальные уравнения таких звеньев можно составлять отдельно и независимо от других звеньев. Поскольку в САУ входят различные усилители, обладающие направленным действием, САУ обладает способностью передавать воздействия только в одном направлении. Поэтому уравнение динамики всей системы можно получить из уравнений динамики ее звеньев, исключая промежуточные переменные.

Элементарные динамические звенья являются основой для построения математической модели системы любой сложности.

Классификация и динамические характеристики звеньев

Тип звена определяется алгоритмом, в соответствии с которым происходит преобразование входного воздействия. В зависимости от алгоритма различают следующие типы элементарных динамических звеньев: пропорциональное (усилительное), апериодическое (инерционное), колебательное, интегрирующее и дифференцирующее.

Каждое звено характеризуется следующими динамическими характеристиками: уравнением динамики (движения), передаточной функцией, переходной и импульсной переходной (весовой) функциями, частотными характеристиками. Такими же динамическими характеристиками оцениваются и свойства автоматической системы. Рассмотрим динамические характеристики на примере апериодического звена,

Рис. 2.2. Электрическая -цепь, представляемая апериодическим звеном, и реакции звена на типовые входные воздействия: а - схема; б - единичное ступенчатое воздействие; в - переходная функция звена; - единичный импульс; д - импульсная переходная функция звена.

которым представляется электрическая цепь, изображенная на рис. 2.2, а.

Уравнение динамики звена (системы). Уравнение динамики элемента (звена) - уравнение, определяющее зависимость выходной величины элемента (звена) от входной величины

Уравнение динамики можно записать в дифференциальной и операционной формах. Для получения дифференциального уравнения элемента составляются дифференциальные уравнения для входной и выходной величин этого элемента. Применительно к электрической цепи (рис. 2.2, а):

Дифференциальное уравнение цепи получают из этих уравнений исключением промежуточной переменной

где - постоянная времени, с; - коэффициент усиления звена.

В теории автоматического управления принята следующая форма записи уравнения: выходная величина и ее производные находятся в левой части, причем на первом месте стоит производная высшего порядка; выходная величина входит в уравнение с коэффициентом, равным единице; входная величина, а также в более общем случае ее производные и другие члены (возмущения) стоят в правой части уравнения. Уравнение (2.1) записано в соответствии с этой формой.

Элемент системы, процесс в котором описывается уравнением вида (2.1), представляется апериодическим звеном (инерционным, статическим звеном первого порядка).

Для получения уравнения динамики в операционной (по Лапласу) форме функции, входящие в дифференциальное уравнение, заменяются преобразованными по Лапласу функциями, а операции дифференцирования

и интегрирования в случае нулевых начальных условий - умножением и делением на комплексную переменную изображений функций, от которых берется производная или интеграл. В результате этого осуществляется переход от дифференциального уравнения к алгебраическому. В соответствии с дифференциальным уравнением (2.1) уравнение динамики апериодического звена в операционной форме для случая нулевых начальных условий имеет вид:

где - изображение по Лапласу функции времени - комплексное число.

Не следует путать операционную форму (2.2) записи уравнения с символической формой записи дифференциального уравнения:

где - символ дифференцирования. Отличить символ «дифференцирования от комплексной переменной несложно: после символа дифференцирования стоит оригинал, т. е. функция от а после комплексной переменной - изображение по Лапласу, т.е. функция от

Из формулы (2.1) видно, что апериодическое звено описывается уравнением первого порядка. Другие элементарные звенья описываются уравнениями нулевого, первого и максимум второго порядка.

Передаточная функция звена (системы) представляет собой отношение изображений по Лапласу выходной Хкых и входной величин при нулевых начальных условиях:

Передаточная функция звена (системы) может быть определена из уравнения звена (системы), записанного в операционной форме. Для апериодического звена в соответствии с уравнением (2.2)

Из выражения (2.3) следует

т. е. зная изображение по Лапласу входного воздействия и передаточную функцию звена (системы), можно определить изображение выходной величины этого звена (системы).

Изображение выходной величины апериодического звена в соответствии с выражением (2.4) следующее:

Переходной функцией звена (системы) h(t) называется реакция звена (системы) на воздействие вида единичной ступенчатой функции (рис. 2.2, б) при нулевых начальных условиях. Переходная функция может быть определена решением дифференциального уравнения обычным или операционным методами. Для определения

операционным методом в уравнение (2.5) подставляем изображение единичной ступенчатой функции и находим изображение переходной функции

т. е. изображение переходной функции равно передаточной функции, деленной на Переходная функция находится как обратное преобразование Лапласа от

Для определения апериодического звена в уравнение (2.6) подставляем и находим изображение переходной функции

Разлагаем на алементарные дроби где и с помощью таблиц преобразования Лапласа находим оригинал

График переходной функции апериодического звена изображен на рис. 2.2, в. Из рисунка видно, что переходный процесс звена имеет апериодический характер. Выходная величина звена достигает своего значения не сразу, а постепенно. В частности, значение достигается через .

Импульсная переходная функция (весовая функция) звена (системы) есть реакция звена (системы) на единичный импульс (мгновенный импульс с бесконечно большой амплитудой и единичной площадью, рис. 2.2, г). Единичный импульс получается дифференцированием единичного скачка: или в операционной форме: Поэтому

т. е. изображение импульсной переходной функции равно передаточной функции звена (системы). Отсюда следует, что для характеристики динамических свойств звена (системы) в равной мере могут быть использованы как передаточная функция, так и импульсная переходная функция. Как видно из (2.8), чтобы получить импульсную переходную функцию, надо найти оригинал, соответствующий передаточной функции Импульсная переходная функция апериодического звена

В соответствии с (2.7) или при переходе к оригиналам импульсная переходная функция звена (системы) может быть также получена дифференцированием переходной функции. Импульсная переходная функция апериодического

(кликните для просмотра скана)

Рис. 2.3. Принципиальные схемы элементов, представляемых пропорциональным звеном: а - делитель напряжения; б - потенциометр; в - усилитель на транзисторе; г - редуктор.

Как видим, выражения (2.9) и (2.10) для совпадают. График импульсной переходной функции апериодического звена изображен на рис. 2.2, д.

Из выражения (2.5) и рассмотренных примеров следует, что при заданном входном воздействии выходная величина определяется передаточной функцией. Поэтому технические требования к выходной величине звена (системы) можно выразить через соответствующие требования к передаточной функции этого звена (системы). В теории автоматического управления метод исследования и проектирования систем с помощью передаточной функции является одним из основных методов.

Пропорциональное (усилительное) звено. Уравнение звена имеет вид:

т. е. между выходной и входной величинами звена имеется пропорциональная зависимость. Уравнение (2.11) в операционной форме

Из уравнения (2.12) определяется передаточная функция звена

т. е. передаточная функция пропорционального звена численно равна коэффициенту усиления. Примерами такого звена могут служить делитель напряжения, потенциометрический датчик, электронный усилительный каскад, идеальный редуктор, схемы которых изображены на рис. 2.3, а, б, е, г соответственно. Коэффициент усиления пропорционального звена может быть как безразмерной (делитель напряжения, усилительный каскад, редуктор), так и размерной величиной (потенциометрический датчик).

Оценим динамические свойства пропорционального звена. При подаче на вход звена ступенчатой функции выходная величина (переходная функция) в силу равенства (2.11) также будет ступенчатой (табл. 2.1), т. е. выходная величина копирует изменение входной

величины без запаздывания и искажения. Поэтому пропорциональное звено называют еще безынерционным.

Импульсная переходная функция пропорционального звена

т. e. представляет собой мгновенный бесконечно большой амплитуды импульс, площадь которого

Колебательное звено. Уравнение звена:

или в операционной форме

Тогда передаточная функция колебательного звена имеет вид

Динамические свойства звена зависят от корней его характеристического уравнения

Свободная составляющая решения

Полное решение уравнения (2.14) при ступенчатом входном воздействии (переходная функция звена) имеет вид:

где - угловая частота собственных колебаний; - начальная фаза колебаний; - декремент затухания; - относительный коэффициент затухания.