Противоположные углы вписанного в окружность четырехугольника. Описанная окружность около четырёхугольника

Окружность называется вписанной в четырехугольник, если все стороны четырехугольника являются касательными к окружности.

Центром этой окружности является точка пересечения биссектрис углов четырехугольника. В этом случае радиусы, проведенные в точки касания являются перпендикулярами к сторонам четырехугольника

Окружность называется описанной около четырехугольника, если она проходит через все его вершины.

Центром этой окружности является точка пересечения серединных перпендикуляров к сторонам четырехугольника

Не во всякий четырехугольник можно вписать окружность и не около всякого четырехугольника можно описать окружность

СВОЙСТВА ВПИСАННЫХ И ОПИСАННЫХ ЧЕТЫРЕХУГОЛЬНИКОВ

ТЕОРЕМА В выпуклом вписанном четырехугольнике суммы противолежащих углов равны между собой и равны 180°.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих углов равны, то около четырехугольника можно описать окружность. Ее центр - точка пересечения серединных перпендикуляров к сторонам.

ТЕОРЕМА Если в четырехугольник вписана окружность, то суммы противолежащих сторон его равны.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность. Ее центр - точка пересечения биссектрис.

Следствия: из всех параллелограммов только около прямоугольника (в частности около квадрата) можно описать окружность.

Из всех параллелограммов только в ромб (в частности в квадрат) можно вписать окружность (центр - точка пересечения диагоналей, радиус - равен половине высоты).

Если около трапеции можно описать окружность, то она равнобедренная. Около любой равнобедренной трапеции можно описать окружность.

Если в трапецию вписана окружность, то радиус ее равен половине высоты.

Задания с решениями

1. Найти диагональ прямоугольника, вписанного в окружность, радиус которой равен 5.

Центром окружности, описанной около прямоугольника является точка пересечения его диагоналей. Следовательно, диагональ АС равна 2R . То есть АС =10
Ответ: 10.

2. Около трапеции, основания которой 6 см и 8 см, а высота 7см, описан круг Найти площадь этого круга.

Пусть DC =6, AB =8. Так как около трапеции описана окружность, то она равнобедренная.

Проведем две высоты DM и CN .Так как трапеция равнобедренная, то AM=NB =

Тогда AN =6+1=7

Из треугольника ANС по теореме Пифагора найдем АС .

Из треугольника CВN по теореме Пифагора найдем ВС .

Окружность, описанная около трапеции, является и окружностью, описанной около треугольника АСВ.

Найдем площадь этого треугольника двумя способами по формулам

Гдe h - высота и - основание треугольника

Где R- радиус описанной окружности.

Из этих выражений получаем уравнение . Откуда

Площадь круга будет равна

3. Углы , и четырехугольника относятся как . Найдите угол , если около данного четырехугольника можно описать окружность. Ответ дайте в градусах

Из условия следует, что .Так как около четырехугольника можно описать окружность, то

Получаем уравнение . Тогда . Сумма всех углов четырехугольника равна 360º. Тогда

. откуда получаем, что

4.Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите среднюю линию трапеции.

Тогда средняя линия равна

5. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

В трапеции радиус вписанной окружности равен половине высоты. Проведем высоту СК.

Тогда .

Так как в трапецию вписана окружность, то суммы длин противоположных сторон равны. Тогда

Тогда периметр

Получаем уравнение

6. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Найдите высоту трапеции.

Пусть О центр описанной около трапеции окружности. Тогда .

Проведем высоту КН через точку О

Тогда , где КО и ОН высоты и одновременно медианы равнобедренных треугольников DOC и АОВ. Тогда

По теореме Пифагора.

1 . Сумма диагоналей выпуклого четырёхугольника больше суммы его двух противоположных сторон.

2 . Если отрезки, соединяющие середины противоположных сторон четырёхугольника

а) равны, то диагонали четырёхугольника перпендикулярны;

б) перпендикулярны, то диагонали четырёхугольника равны.

3 . Биссектрисы углов при боковой стороне трапеции пересекаются на её средней линии.

4 . Стороны параллелограмма равны и . Тогда четырёхугольник, образованный пересечениями биссектрис углов паралле­лограмма, является прямоугольником, диагонали которого равны .

5 . Если сумма углов при одном из оснований трапеции равна 90°, то отрезок, соединяющий середины оснований трапеции, равен их полуразности.

6 . На сторонах АВ и AD параллелограмма ABCD взяты точки М и N так, что прямые МС и NC делят параллелограмм на три равновеликие части. Найдите MN, если BD=d.

7 . Отрезок прямой, параллельной основаниям трапеции, заключённый внутри трапеции, разбивается ее диагоналями на три части. Тогда отрезки, прилегающие к боковым сторонам, равны между собой.

8 . Через точку пересечения диагоналей трапеции с основаниями и проведена прямая, параллельная основаниям. Отрезок этой прямой, заключенный между боковыми сторонами трапеции, равен .

9 . Трапеция разделена прямой, параллельной её основаниям, равным и , на две равновеликие трапеции. Тогда отрезок этой прямой, заключённый между боковыми сторонами, равен .

10 . Если выполняется одно из следующих условий, то четыре точки А, В, С и D лежат на одной окружности.

а) CAD=CBD = 90°.

б) точки А и В лежат по одну сторону от прямой CD и угол CAD равен углу CBD.

в) прямые АС и BD пересекаются в точке О и О А ОС=ОВ OD.

11 . Прямая, соединяющая точку Р пересечения диагоналей четырехугольника ABCD с точкой Q пересечения прямых АВ и CD, делит сторону AD пополам. Тогда она делит пополам и сторону ВС.

12 . Каждая сторона выпуклого четырёхугольника поделена на три равные части. Соответствующие точки деления на противоположных сторонах соединены отрезками. Тогда эти отрезки делят друг друга на три равные части.

13 . Две прямые делят каждую из двух противоположных сторон выпуклого четырёхугольника на три равные части. Тогда между этими прямыми заключена треть площади четырёхугольника.

14 . Если в четырёхугольник можно вписать окружность, то отрезок, соединяющий точки, в которых вписанная окружность касается противоположных сторон четырёхугольника, проходит через точку пересечения диагоналей.

15 . Если суммы противоположных сторон четырёхугольника равны, то в такой четырёхугольник можно вписать окружность.

16. Свойства вписанного четырёхугольника со взаимно перпендикулярными диагоналями. Четырёхугольник ABCD вписан в окружность радиуса R. Его диагонали АС и BD взаимно перпендикулярны и пересекаются в точке Р. Тогда

а) медиана треугольника АРВ перпендикулярна стороне CD;

б) ломаная АОС делит четырёхугольник ABCD на две равновеликие фигуры;

в) АВ 2 +CD 2 =4R 2 ;

г) АР 2 +ВР 2 +СР 2 +DP 2 = 4R 2 и АВ 2 +ВС 2 +CD 2 +AD 2 =8R 2 ;

д) расстояние от центра окружности до стороны четырёхугольника вдвое меньше противоположной стороны.

е) если перпендикуляры, опущенные на сторону AD из вершин В и С, пересекают диагонали АС и BD в точках Е и F, то BCFE - ромб;

ж) четырёхугольник, вершины которого - проекции точки Р на стороны четырёхугольника ABCD, - и вписанный, и описанный;

з) четырёхугольник, образованный касательными к описанной окружности четырёхугольника ABCD, проведёнными в его вершинах, можно вписать в окружность.

17 . Если a, b, c, d - последовательные стороны четырёхугольника, S - его площадь, то , причем равенство имеет место только для вписанного четырёхугольника, диагонали которого взаимно перпендикулярны.

18 . Формула Брахмагупты. Если стороны вписанного четырехугольника равны a, b, с и d, то его площадь S может быть вычислена по формуле ,

где - полупериметр четырехугольника.

19 . Если четырёхугольник со сторонами а , b, с, d можно вписать и около него можно описать окружность, то его площадь равна .

20 . Точка Р расположена внутри квадрата ABCD, причем угол PAB равен углу РВА и равен 15°. Тогда треугольник DPC - равносторонний.

21 . Если для вписанного четырёхугольника ABCD выполнено равенство CD=AD+ВС, то биссектрисы его углов А и В пересекаются на стороне CD.

22 . Продолжения противоположных сторон АВ и CD вписанного четырёхугольника ABCD пересекаются в точке М, а сторон AD и ВС - в точке N. Тогда

а) биссектрисы углов AMD и DNC взаимно перпендикулярны;

б) прямые МQ и NQ пересекают стороны четырёхугольника в вер­шинах ромба;

в) точка пересечения Q этих биссектрис лежит на отрезке, соеди­няющем середины диагоналей четырёхугольника ABCD.

23 . Теорема Птолемея. Сумма произведений двух пар противопо­ложных сторон вписанного четырёхугольника равна произведению его диагоналей.

24 . Теорема Ньютона. Во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

25 . Теорема Монжа. Прямые, проведённые через середины сторон вписанного четырёхугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.

27 . Четыре круга, построенных на сторонах выпуклого четырёхугольника как на диаметрах, покрывают весь четырёхугольник.

29 . Два противоположных угла выпуклого четырёхугольника - тупые. Тогда диагональ, соединяющая вершины этих углов, меньше другой диагонали.

30. Центры квадратов, построенных на сторонах параллелограмма вне его, сами образуют квадрат.

Тема «Окружность, описанная около правильного многоугольника» довольно подробно рассматривается в рамках школьной программы. Несмотря на это, задания, относящиеся к данному разделу планиметрии, вызывают у многих старшеклассников определенные сложности. При этом понимать принцип решения задач ЕГЭ с окружностью, описанной около многоугольника, должны выпускники с любым уровнем подготовки.

Как подготовиться к единому госэкзамену?

Для того чтобы задания ЕГЭ по теме «Окружность, описанная около правильного многоугольника» не вызывали у учащихся затруднений, занимайтесь вместе с образовательным порталом «Школково». С нами вы сможете повторить теоретический материал по темам, которые вызывают у вас трудности. Теоремы и формулы, которые раньше казались достаточно сложными, у нас изложены доступно и понятно.

Чтобы освежить в памяти основные определения и понятия об углах и центре окружности, описанной около многоугольника, а также теоремы, связанные с длинами отрезков , выпускникам достаточно перейти в раздел «Теоретическая справка». Здесь мы разместили материал, составленный нашими опытными сотрудниками специально для учащихся с различным уровнем подготовки.

Чтобы закрепить усвоенную информацию, старшеклассники могут попрактиковаться в выполнении упражнений. На образовательном портале «Школково» в разделе «Каталог» представлена большая база задач различной сложности для максимально эффективной подготовки к ЕГЭ. В каждом задании на сайте прописан алгоритм решения и дан правильный ответ. База упражнений «Школково» регулярно обновляется и дополняется.

Практиковаться в выполнении задач на нашем сайте учащиеся из Москвы и других российских городов могут в онлайн-режиме. В случае необходимости любое упражнение можно сохранить в разделе «Избранное». В дальнейшем к этому заданию можно будет вернуться и, к примеру, обсудить алгоритм его решения со школьным преподавателем или репетитором.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Эта статья содержит минимальный набор сведений об окружности, необходимый для успешной сдачи ЕГЭ по математике.

Окружностью называется множество точек, расположенных на одинаковом расстоянии от данной точки, которая называется центром окружности.

Для любой точки , лежащей на окружности выполняется равенство (Длина отрезка равна радиусу окружности.

Отрезок, соединяющий две точки окружности называется хордой.

Хорда, проходящая через центр окружности называется диаметром окружности ().

Длина окружности:

Площадь круга:

Дуга окружности:

Часть окружности, заключенная между двумя ее точками называется дугой окружности. Две точки окружности определяют две дуги. Хорда стягивает две дуги: и . Равные хорды стягивают равные дуги.

Угол между двумя радиусами называется центральным углом :

Чтобы найти длину дуги , составляем пропорцию:

а) угол дан в градусах:

б) угол дан в радианах:

Диаметр, перпендикулярный хорде , делит эту хорду и дуги, которые она стягивает пополам:

Если хорды и окружности пересекаются в точке , то произведения отрезков хорд, на которые они делятся точкой равны между собой:

Касательная к окружности.

Прямая, имеющая с окружностью одну общую точку называется касательной к окружности. Прямая, имеющая с окружностью две общие точки называется секущей.

Касательная к окружности перпендикулярна радиусу, проведенному к точке касания.

Если из данной точки проведены к окружности две касательные, то отрезки касательных равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке:


Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть :

Следствие: произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть :


Углы в окружности.

Градусная мера центрального угла равна градусной мере дуги, на которую он опирается:

Угол, вершина которого лежит на окружности, а стороны содержат хорды, называется вписанным углом . Вписанный угол измеряется половиной дуги, на которую он опирается:

∠∠

Вписанный угол, опирающийся на диаметр, прямой:

∠∠∠

Вписанные углы, опирающиеся на одну дугу, равны :

Вписанные углы, опирающиеся на одну хорду равны или их сумма равна

∠∠

Вершины треугольников с заданным основанием и равными углами при вершине лежат на одной окружности:


Угол между двумя хордами (угол с вершиной внутри окружности) равен полусумме угловых величин дуг окружности, заключенных внутри данного угла и внутри вертикального угла.

∠ ∠∠(⌣ ⌣ )

Угол между двумя секущими (угол с вершиной вне окружности) равен полуразности угловых величин дуг окружности, заключенных внутри угла.


∠ ∠∠(⌣ ⌣ )

Вписанная окружность.

Окружность называется вписанной в многоугольник , если она касается его сторон. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.

Не во всякий многоугольник можно вписать окружность.

Площадь многоугольника, в который вписана окружность можно найти по формуле

здесь - полупериметр многоугольника, - радиус вписанной окружности.

Отсюда радиус вписанной окружности равен

Если в выпуклый четырехугольник вписана окружность, то суммы длин противоположных сторон равны . Обратно: если в выпуклом четырехугольнике суммы длин противоположных сторон равны, то в четырехугольник можно вписать окружность:

В любой треугольник можно вписать окружность, притом только одну. Центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов треугольника.


Радиус вписанной окружности равен . Здесь

Описанная окружность.

Окружность называется описанной около многоугольника , если она проходит через все вершины многоугольника. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров сторон многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определенного любыми тремя вершинами данного многоугольника:

Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна .

Около любого треугольника можно описать окружность, притом только одну. Ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника:

Радиус описанной окружности вычисляется по формулам:

Где - длины сторон треугольника, - его площадь.

Теорема Птолемея

Во вписанном четырехугольнике произведение диагоналей равно сумме произведений его противоположных сторон: