Почему инертные газы называют благородными. Благородные газы Некоторых инертных газов их

В этой статье мы уделим внимание VIIIA -группе .

Это элементы: гелий (He ), неон (Ne ), аргон (Ar ), криптон (Kr ), ксенон (Xe ) (это основные), а так же радиоактивный радон (Rn ).

И формально сюда же можно отнести искусственно полученный унуноктий (Uuo ).

У этой группы элементов тоже есть свое название – аэрогены , но чаще их называют благородные , или инертные газы .

Инертные газы

Эти газы объединяет низкая реакционная активность. Под словом инертность как раз и понимается малоактивность. Поэтому об их существовании долгое время даже не догадывались. Определить их с помощью реакций нельзя. Обнаружили их в воздухе (отсюда и название аэрогены), удалив из него кислород и прочие «побочные газы», чтобы получить азот, и экспериментально установили, что полученный таким образом азот имеет примеси. Примесями этими и оказались инертные газы.

Чтобы понять, с чем связана низкая реакционная активность этих газов нужно построить их электронные диаграммы:

Мы можем видеть, что нет неспаренных электронов , орбитали заполнены. Это очень выгодное состояние электронной оболочки. Поэтому и все остальные элементы, образуя соединения, стремятся приобрести электронную конфигурацию благородных газов (вспомните правило октета), потому что она энергетически выгодная, а атомы, как и люди, выгоду любят.

Из-за малоактивности атомы благородных газов даже не соединяются в двухатомные молекулы (как это делают : O 2 , Cl 2 , N 2 и т.д.).

Благородные газы существуют в виде одноатомных молекул .

Говорить, что благородные газы абсолютно инертны нельзя. У некоторых аэрогенов есть свободные орбитали в пределах одного энергетического уровня, а это значит, что возможен процесс возбуждения электронов. В настоящее время в чрезвычайно экстремальных условиях получены некоторые соединения этих «ленивых» с точки зрения химической активности элементов. Но в школьной программе, а тем более в , это не рассматривается.

Физические свойства

  • гелий и неон легче воздуха, остальные благородные газы, которые находятся ниже – тяжелее, что обусловлено возрастанием атомной массы.
  • из-за химической инертности, вкусовые и обонятельные рецепторы не могут обнаружить присутствие благородных газов в воздухе, поэтому они не имеют ни вкуса, ни запаха.

Практическая значимость благородных газов.

Гелий – всем хорошо известный газ, для заполнения воздушных шариков, который делает голос смешным. Гелием заполняют дирижабли (этот газ, в отличие от водорода, не взрывоопасен).

Благородные газы используют для создания инертной (химически не активной) атмосферы. Некоторые аэрогены входят в состав дыхательных смесей, разбавляя собой кислород (кислород – сильный окислитель и дышать им в чистом виде нельзя).

При пропускании через благородные газы разряда тока, они имеют свойство ярко светиться. Что обеспечивает аэрогенам применение для осветительной аппаратуры. Выглядит довольно зрелищно.

Страница 1
Благородные (инертные) газы.


2 He

10 Ne

18 Ar

36 Kr

54 Xe

86 Rn

Атомная масса

4,0026

20,984

39,948

83,80

131,30



Валентные электроны

1s 2

(2)2s 2 2p 6

(8)3s 2 3p 6

(18)4s 2 4p 6

(18)5s 2 5p 6

(18)6s 2 6p

Радиус атома

0,122

0,160

0,192

0,198

0,218

0,22

Энергия ионизации Э - → Э +

24,59

21,57

15,76

14,00

12,13

10,75

Содержание в земной атмосфере, %

5*10 -4

1,8*10 -3

9,3*10 -1

1,1*10 -4

8,6*10 -6

6*10 -20

Благородными (инертными) газами называют элементы главной подгруппы VIII группы: гелий(Не), неон(Nе), аргон(Аr), криптон (Кr), ксенон(Хе) и радон(Rn) (радиоактивный элемент). Каждый благородный газ завершает соответствующий период в Периодической системе и имеет устойчивый, полностью завершенный внешний электронный уровень – ns 2 np 6 . –этим объясняется уникальность свойств элементов подгруппы. Считается, что благородные газы полностью инертны. Отсюда происходит их второе название – инертные.

Все благородные газы входят в состав атмосферы, их содержание в атмосфере составляет по объёму (%): гелия – 4,6 * 10 -4 ; аргона – 0,93; криптона – 1,1* 10 -4 ; ксенона – 0,8 * 10 -6 и радона – 6 * 10 -8 . Все они при нормальных условиях – газы без запаха и цвета, плохо растворимые в воде. Их температуры кипения и плавления возрастают с увеличением размеров атомов. Молекулы одноатомны.



Свойства

He

Ne

Ar

Kr

Xe

Rn

Атомный радиус, нм

0,122

0,160

0,191

0,201

0,220

0,231

Энергия ионизации атомы, эВ

24,58

21,56

15,76

14,00

12,13

10,75

Температура кипения, о С

-268,9

-245,9

-185,9

-153,2

-181,2

Около

Температура плавления, о С

-272,6(под давлением)

-248,6

-189,3

-157,1

-111,8

Около

Растворимость в 1 л воды при 0 о С, мл

10

-

60

-

50

-

§1. Гелий

Гелий обнаружен в 1868г. Методом спектрального анализа солнечного излучения (Локьер и Франкленд, Англия; Жансен, Франция). На Земле Гелий был найден в 1894г. В минерале клевеите (Рамзай, Англия).

От греч. ἥλιος - «Солнце» (см. Гелиос ). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» - «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион » закрепилось за ядром лёгкого изотопа гелия - гелия-3 .

Особая устойчивость электронной структуры атома отличает гелий от всех остальных химических элементов периодической системы.

Гелий по физическим свойствам наиболее близок к молекулярному водороду. Вследствие ничтожной поляризуемости атомов гелия, у него самые низкие температуры кипения и плавления.

Гелий хуже других газов растворяется в воде и в других растворителях. В Обычных условиях гелий химически инертен, но при сильном возбуждении атомов он может образовывать молекулярные ионы. В обычных условиях эти ионы неустойчивы; захватываю недостающий электрон, они распадаются на два нейтральных атома. Возможно также образование ионизированных молекул. Гелий – наиболее трудно сжимаемый из всех газов.

Гелий удаётся перевести в жидкое состояние только при температуре, приближающийся к абсолютному нулю, т.е. -273,15. Жидкий гелий при температура около 2К обладает уникальным свойством – сверхтекучестью, которая в 1938г. Была открыта П.Л. Капицей и теоретически обоснована Л.Д. Ландау, создавшим квантовую теорию свертекучести. Жидкий гелий существует в двух модификациях: гелий I, который ведет себя как обычная жидкость, и гелий II – сверхтеплопроводная и сверхлетучая жидкость. Гелий II проводит теплоту в 10 7 раз лучше, чем гелий I (и в 1000 раз лучше, чем серебро). Он практически не имеет никакой вязкости, мгновенно проходит через узкие капилляры, самопроизвольно переливается через стенки сосудов в виде тонкой плёнки. Атомы He в сверхтекучем состоянии ведут себя почти так же, как электроны в сверхпроводниках.

В земной коре гелий накапливается за счёт распада частиц радиоактивных элементов, содержится растворенным в минералах, в самородных металлах.

Ядра гелия чрезвычайно устойчивы и широко используются для проведения различных ядерных реакций.

В промышленности гелий в основном выделяют из природных газов методом глубокого охлаждения. При этом он, как самое низкокипящее вещество, остается в виде газа, тогда как все остальные газы конденсируются.

Газообразный гелий применяется для создания инертной атмосферы при сварке металлов, при консервации пищевых продуктов и др. Жидкий гелий применяется в лаборатории в качестве хладоагента в физике низких температур.

§2. Неон


Неон открыли в июне 1898 года шотландский химик Уильям Рамзай и английский химик Морис Траверс . Они выделили этот инертный газ «методом исключения», после того, как кислород, азот , и все более тяжёлые компоненты воздуха были превращены в жидкость . Элементу дали незамысловатое название «неон», что в переводе с греческого означает «новый». В декабре 1910 года французский изобретатель Жорж Клод сделал газоразрядную лампу, заполненную неоном.

Название происходит от греч. νέος - новый.

Существует легенда, согласно которой название элементу дал тринадцатилетний сын Рамзая - Вилли, который спросил у отца, как тот собирается назвать новый газ, заметив при этом, что хотел бы дать ему имя novum (лат. - новый). Его отцу понравилась эта идея, однако он посчитал, что название neon , образованное от греческого синонима, будет звучать лучше.

Неон, как и гелий, обладает очень высоким ионизационным потенциалом(21,57 эВ), поэтому соединений валентного типа не образует. Основное отличие его от гелия обуславливается относительно большей поляризуемостью атом, т.е. несколько большей склонностью образовывать межмолекулярную связь.

Неон имеет очень низкие температуры кипения (-245,9 о С) и плавления (-248,6 о С), уступая лишь гелию и водороду. По сравнению с гелием у неона несколько большая растворимость и способность адсорбироваться.

Как и гелий, неон при сильном возбуждении атомов образует молекулярные ионы типа Ne 2 + .

Неон получают совместно с гелием в качестве побочного продукта в процессе сжижения и разделения воздуха. Разделение гелия и неона осуществляется за счёт адсорбции или конденсации. Адсорбированный метод основан на способности неона в отличии от гелия адсорбироваться активированным углём, охлаждённым жидким азотом. Конденсационный способ основан на вымораживании неона при охлаждении смеси жидким водородом.

Неон применяется в электровакуумной технике для наполнения стабилизаторов напряжения, фотоэлементов и других приборов. Различные типы неоновых ламп с характерным красным свечением употребляют на маяках и в других осветительных устройствах, в световой рекламе и т.п.

Природный неон состоит из трёх стабильных изотопов: 21 Ne и 22 Ne.

В мировой материи неон распределен неравномерно, однако в целом по распространенности во Вселенной он занимает пятое место среди всех элементов - около 0,13 % по массе. Наибольшая концентрация неона наблюдается на Солнце и других горячих звездах , в газовых туманностях , в атмосфере внешних планет Солнечной системы - Юпитера , Сатурна , Урана , Нептуна . В атмосфере многих звезд неон занимает третье место после водорода и гелия. Из всех элементов второго периода неон - самый малочисленный на Земле. В рамках восьмой группы неон по содержанию в земной коре занимает третье место - после аргона и гелия. Газовые туманности и некоторые звезды содержат неона во много раз больше, чем его находится на Земле.

На Земле наибольшая концентрация неона наблюдается в атмосфере - 1,82·10 −3 %по объему, а его общие запасы оцениваются в 7,8·10 14 м³. В 1 м³ воздуха содержится около 18,2 см³ неона (для сравнения: в том же объеме воздуха содержится только 5,2 см³ гелия). Среднее содержание неона в земной коре мало − 7·10 −9 % по массе. Всего на нашей планете около 6,6·10 10 т неона. В изверженных породах находится около 10 9 т этого элемента. По мере разрушения пород газ улетучивается в атмосферу. В меньшей мере атмосферу снабжают неоном и природные воды.

Причину неоновой бедности нашей планеты ученые усматривают в том, что некогда Земля потеряла свою первичную атмосферу, которая и унесла с собой основную массу инертных газов, которые не могли, как кислород и другие газы, химически связаться с другими элементами в минералы и тем самым закрепиться на планете.

В 1892 году британский ученый Джон Стретт, более известный нам как лорд Рэлей (см. Критерий Рэлея ), занимался одной из тех однообразных и не слишком увлекательных работ, без которых тем не менее не может существовать экспериментальная наука. Он исследовал оптические и химические свойства атмосферы, поставив перед собой цель измерить массу литра азота с точностью, которой до него никому не удавалось достичь.

Однако результаты этих измерений казались парадоксальными. Масса литра азота, полученного методом удаления из воздуха всех других известных тогда веществ (таких, как кислород), и масса литра азота, полученного посредством химической реакции (пропусканием аммиака над нагретой до красного каления медью) оказывались разными. Получалось, что азот из воздуха на 0,5% тяжелее азота, полученного химическим путем. Это расхождение не давало Рэлею покоя. Убедившись, что никаких ошибок в эксперименте допущено не было, Рэлей опубликовал в журнале Nature письмо, в котором спрашивал, не может ли кто-нибудь объяснить причину этих расхождений.

Сэр Уильям Рамзай (Рэмзи) (Sir William Ramsay, 1852–1916), работавший в то время в Университетском колледже в Лондоне, ответил Рэлею на это письмо. Рамзай предположил, что в атмосфере может присутствовать не открытый еще газ, и для выделения этого газа предложил использовать новейшее оборудование. В проведенном эксперименте обогащенный кислородом воздух, смешанный с водой, подвергался воздействию электрического разряда, что вызывало соединение атмосферного азота с кислородом и растворение образующихся окислов азота в воде. К концу эксперимента, после того как весь азот и кислород из воздуха уже были исчерпаны, в сосуде все еще оставался маленький пузырек газа. Когда через этот газ пропустили электрическую искру и подвергли его спектроскопии, ученые увидели неизвестные ранее спектральные линии (см. Спектроскопия ). Это означало, что был открыт новый элемент. Рэлей и Рамзай опубликовали свои результаты в 1894 году, назвав новый газ аргоном , от греческого «ленивый», «безразличный». А в 1904 году оба они за эту работу получили Нобелевскую премию. Однако она не была разделена между учеными, как это принято в наше время, а каждый получил премию в своей области - Рэлей по физике, а Рамзай - по химии.

Имел место даже своего рода конфликт. В то время многие ученые полагали, что «владеют» отдельными областями исследований, и не было до конца ясно, давал ли Рэлей Рамзаю разрешение работать над этой проблемой. К счастью, оба ученых оказались достаточно мудры, чтобы осознать преимущества совместной работы, и, сообща опубликовав ее результаты, они исключили возможность неприятной борьбы за первенство.

Аргон - одноатомный газ. Имея относительно больший размер атома, аргон более склонен к образованию межмолекулярных связей, чем гелий и неон. Поэтому аргон в виде просо вещества характеризуется несколько более высокими температурами кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода , но немного выше, чем у азота ) и плавления(-184,3°C). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

Аргон образует межмолекулярные соединения включения – клатраты примерного состава Ar*6H 2 0 представляет собой кристаллическое вещество, разлагающееся при атмосферном давлении и температуре -42,8 °C. Его можно получить непосредственно взаимодействием аргона с водой при 0°C и давлении порядка 1,5*10 7 Па. С соединениями H 2 S, SO 2 , CO 2 , HCl аргон даёт двойные гидраты, т.е. смешанные клатраты.

Аргон получают при разделении жидкого воздуха, а также из отходов газов синтеза аммиака. Аргон применяют в металлургических и химических процессах, требующих инертной атмосферы, в светотехнике, электротехнике, ядерной энергетике и т.п.

Аргон (вместе с неоном ) наблюдается на некоторых звездах и в планетарных туманностях . В целом его в космосе больше, чем кальция , фосфора , хлора , в то время как на Земле существуют обратные отношения.

Аргон - третий по содержанию после азота и кислорода компонент воздуха , его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе, его запасы в атмосфере оцениваются в 4·10 14 т. Аргон - самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона , 5,2 см³ гелия , 1,1 см³ криптона , 0,09 см³ ксенона ).

§4. Криптон

В 1898 году английский учёный У.Рамзай выделил из жидкого воздуха (предварительно удалив кислород, азот и аргон) смесь, в которой спектральным методом были открыты два газа: криптон («скрытый», «секретный») и ксенон («чуждый», «необычный»).

От греч. κρυπτός - скрытый.

Находится в атмосферном воздухе. Образуется при ядерном делении, в том числе и в результате естественных процессов, происходящих в рудах радиоактивных металлов. Криптон получают как побочный продукт при воздуха разделении .

Газообразный кислород , содержащий Kr и Хе, из конденсатора установки для получения О 2 подается на ректификацию в т. наз. криптоновую колонну, в к-рой Kr и Хе извлекаются из газообразного О 2 при промывке его флегмой , образующейся в верх, конденсаторе криптоновой колонны. Кубовая жидкость при этом обогащается Kr и Хе; ее затем практически полностью испаряют, неиспаривщаяся часть -т. наз. бедный жрилтонксеноновый концентрат (менее 0,2% Kr и Хе) - непрерывно поступает через испаритель в газгольдер . При оптимальном флегмовом числе 0,13 степень извлечения Kr и Хе составляет 0,90. Выделенный концентрат сжимают до 0,5-0,6 МПа и через теплообменник подают в нагретый до ~1000 К контактный аппарат с СuО для выжигания содержащихся в нем углеводородов . После охлаждения в водяном холодильнике газовую смесь очищают от примесей СО 2 и воды с помощью КОН сначала в скрубберах , а затем в баллонах. Выжигание и очистку повторяют неск. раз. Очищенный концентрат охлаждают и непрерывно подают в ректификац. колонну под давлением 0,2-0,25 МПа. При этом Kr и Хе накапливаются в кубовой жидкости до содержания 95-98%. Эту т. наз. сырую криптон-ксeноновую смесь через газификатор, аппарат для выжигания углеводородов и систему очистки направляют в газгольдеры . Из газгольдера газовая смесь поступает в газификатор, где ее конденсируют при 77 К. Часть этой смеси подвергают фракционированному испарению . В результате послед. очистки от О 2 в контактном аппарате с СuО получают чистый криптон. Оставшуюся газовую смесь подвергают адсорбции в аппаратах с активир. углем при 200-210 К; при этом выделяется чистый криптон, а Хе и часть криптона поглощаются углем . Адсорбированные Kr и Хе разделяют фракционированной десорбцией . При мощности 20000 м 3 /ч перерабатываемого воздуха (273 К, 0,1 МПа) получают в год 105 м 3 криптона. Его добывают также из метановой фракции продувочных газов в произ-ве NH 3 . Выпускают чистый криптон (более 98,9% по объему криптона), техн. (более 99,5% смеси Kr и Хе) и крип-тон-ксеноновую смесь (менее 94,5% криптона). Используют криптон для наполнения ламп накаливания, газоразрядных и рентгеновских трубок. Радиоактивный изотоп 85 Kr используют как источник b-излучения в медицине, для обнаружения течей в вакуумных установках, как изотопный индикатор при исследованиях коррозии, для контроля износа деталей. Хранят и транспортируют криптон и его смеси с Хе под давлением 5-10 МПа при 20°С в герметичных стальных баллонах черного цвета соотв. с одной желтой полосой и надписью "криптон" и двумя желтыми полосами и надписью "криптон-ксенон". Криптон открыли в 1898 У. Рамзай и М. Траверс. Лит.

§5. Ксенон

Открыт в 1898 году английскими учеными У.Рамзаем и У. Рэлей как небольшая примесь к криптону .

От греч. ξένος - чужой.

Температура плавления −112 °C,температура кипения −108 °C,свечение в разряде фиолетовым цветом.

Первый инертный газ , для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона , тетрафторид ксенона , гексафторид ксенона , триоксид ксенона .

Получают ксенон как побочный продукт при воздуха разделении . Его выделяют из криптон-ксенонового концентрата (см. Криптон ). Выпускают ксенон чистый (99,4% по объему) и высокой чистоты (99,9%).Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот . После такого разделения, которое обычно проводится методом ректификации , получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0.1-0.2 % криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией . В заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон.

Из-за своей малой распространенности, ксенон гораздо дороже более легких инертных газов .

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:


  • Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).

  • Радиоактивные изотопы (127 Xe, 133 Xe, 137 Xe, и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.

  • Фториды ксенона используют для пассивации металлов.

  • Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом - ионных и плазменных) двигателей космических аппаратов.

  • С конца XX века ксенон стал применяться как средство для общего наркоза (достаточно дорогой, но абсолютно нетоксичный, точнее - как инертный газ - не вызывает химических последствий). Первые диссертации о технике ксенонового наркоза в России - 1993 г., в качестве лечебного наркоза эффективно применяется для снятия острых абстинентных состояний и лечения наркомании, а также психических и соматических расстройств.

  • Жидкий ксенон иногда используется как рабочая среда лазеров.

  • Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а так же в качестве компонентов газовых смесей для лазеров.

  • В изотопе 129 Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами - состояния называемого гиперполяризацией.

  • Ксенон используется в конструкции ячейки Голея.

  • В качестве химических катализаторов.

  • Для транспортировки фтора, проявляющего сильные окисляющие свойства.
Ксенон относительно редок в атмосфере Солнца , на Земле , в составе астероидов и комет . Концентрация ксенона в атмосфере Марса аналогична земной: 0.08 миллионной доли , хотя содержание 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера , напротив, необычно высокая концентрация ксенона в атмосфере - почти в два раза выше, чем у Солнца.

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0.087±0.001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками . Некоторые радиоактивные изотопы ксенона, например, 133 Xe и 135 Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах .

Английский ученый Э. Резерфорд в 1899 году отметил, что препараты тория испускают, кроме α-частиц, и некое неизвестное ранее вещество, так что воздух вокруг препаратов тория постепенно становится радиоактивным. Это вещество он предложил назвать эмана́цией (от латинского emanatio - истечение) тория и дать ему символ Em. Последующие наблюдения показали, что и препараты радия также испускают некую эманацию, которая обладает радиоактивными свойствами и ведет себя как инертный газ.

Первоначально эманацию тория называли торо́ном, а эманацию радия - радо́ном. Было доказано, что все эманации на самом деле представляют собой радионуклиды нового элемента - инертного газа, которому отвечает атомный номер 86. Впервые его выделили в чистом виде Рамзай и Грей в 1908 году, они же предложили назвать газ нитон (от лат. nitens, светящийся). В 1923 году газ получил окончательное название радон и символ Em был сменен на Rn.

Радон - радиоактивный одноатомный газ без цвета и запаха. Растворимость в воде 460 мл/л; в органических растворителях, в жировой ткани человека растворимость радона в десятки раз выше, чем в воде. Газ хорошо просачивается сквозь полимерные плёнки. Легко адсорбируется активированным углем и силикагелем .

Собственная радиоактивность радона вызывает его флюоресценцию . Газообразный и жидкий радон флюоресцирует голубым светом, у твёрдого радона при охлаждении до азотных температур цвет флюоресценции становится сперва жёлтым, затем красно-оранжевым.

Радон образует клатраты , которые, хотя и имеют постоянный состав, химических связей с участием атомов радона в них нет. С фтором радон при высоких температурах образует соединения состава RnF n , где n = 4, 6, 2. Так, дифторид радона RnF 2 является белым нелетучим кристаллическим веществом. Фториды радона могут быть получены также под действием фторирующих агентов (например, фторидов галогенов). При гидролизе тетрафторида RnF 4 и гексафторида RnF 6 образуется оксид радона RnO 3 . Получены также соединения с катионом RnF + .

Для получения радона через водный раствор любой соли радия продувают воздух, который уносит с собой образующийся при радиоактивном распаде радия радон. Далее воздух тщательно фильтруют для отделения микрокапель раствора, содержащего соль радия, которые могут быть захвачены током воздуха. Для получения собственно радона из смеси газов удаляют химически активные вещества (кислород, водород, водяные пары и т. д.), остаток конденсируют жидким азотом, затем из конденсата отгоняют азот и другие инертные газы (аргон, неон и т.д).

Радон используют в медицине для приготовления радоновых ванн . Радон используется в сельском хозяйстве для активации кормов домашних животных [ источник не указан 272 дня ] , в металлургии в качестве индикатора при определении скорости газовых потоков в доменных печах, газопроводах. В геологии измерение содержания радона в воздухе и воде применяется для поиска месторождений урана и тория , в гидрологии - для исследования взаимодействия грунтовых и речных вод. Динамика концентрации радона в подземных водах может применяться для прогноза землетрясений.

Входит в состав радиоактивных рядов 238 U, 235 U и 232 Th. Ядра радона постоянно возникают в природе при радиоактивном распаде материнских ядер. Равновесное содержание в земной коре 7·10 −16 % по массе. Ввиду химической инертности радон относительно легко покидает кристаллическую решётку «родительского» минерала и попадает в подземные воды, природные газы и воздух. Поскольку наиболее долгоживущим из четырёх природных изотопов радона является 222 Rn, именно его содержание в этих средах максимально.

Концентрация радона в воздухе зависит в первую очередь от геологической обстановки (так, граниты, в которых много урана, являются активными источниками радона, в то же время над поверхностью морей радона мало), а также от погоды (во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой; снежный покров также препятствует доступу радона в воздух). Перед землетрясениями наблюдалось повышение концентрации радона в воздухе, вероятно, благодаря более активному обмену воздуха в грунте ввиду роста микросейсмической активности.

(Галина Афанасьевна – HELP с криптоном,ксеноном, аргоном!может ещё чтото добавить? И что писать дальше?)

страница 1

- (a. inert gasses; н. Inertgase, Tragergase; ф. gaz inertes; и. gases inertes) благородные, редкие газы одноатомные газы без цвета и запаха: гелий (Не), неон (Ne) … Геологическая энциклопедия

- (благородные газы, редкие газы) элементы гл. подгруппы VIII группы периодич. системы элементов. К И. г. относится гелий (Не), неон (Ne), аргон (Аr), криптон (Кr), ксенон (Хе) и радиоакт. радон (Rn). В природе И. г. присутствуют в атмосфере, Не… … Физическая энциклопедия

Большой Энциклопедический словарь

Инертные газы - то же, что благородные газы … Российская энциклопедия по охране труда

Инертные газы - ИНЕРТНЫЕ ГАЗЫ, то же, что благородные газы. … Иллюстрированный энциклопедический словарь

ИНЕРТНЫЙ [нэ], ая, ое; тен, тна. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

инертные газы - Элементы VIII группы Периодич. системы: Не, Ne, Ar, Kr, Хе, Rn. И. г. отличаются хим. инертностью, что объясняется устойчивой внешн. эл нной оболочкой, на к рой у Не находится 2 эл на, у остальных по 8 эл нов. И. г. отличаются высоким потенциалом … Справочник технического переводчика

инертные газы - элементы VIII группы Периодической системы: Не, Ne, Ar, Kr, Хе, Rn. Инертные газы отличаются химической инертностью, что объясняется устойчивой внешней электронной оболочкой, на которой у Не находится 2 электрона, у остальных по 8… … Энциклопедический словарь по металлургии

Благородные газы, редкие газы, химические элементы, образующие главную подгруппу 8 й группы периодической системы Менделеева: Гелий Не (атомный номер 2), Неон Ne (10), Аргон Ar (18), Криптон Kr (36), Ксенон Xe (54) и Радон Rn (86). Из… … Большая советская энциклопедия

ГРУППА 0. БЛАГОРОДНЫЕ (ИНЕРТНЫЕ) ГАЗЫ ГЕЛИЙ, НЕОН, АРГОН, КРИПТОН, КСЕНОН, РАДОН Атомы элементов нулевой группы имеют полностью завершенную внешнюю электронную оболочку, что соответствует наиболее стабильной электронной конфигурации, и в течение… … Энциклопедия Кольера

Книги

  • Комплект таблиц. Химия. Неметаллы (18 таблиц) , . Учебный альбом из 18 листов. Арт. 5-8688-018 Галогены. Химия галогенов. Сера. Аллотропия. Химия серы. Серная кислота. Химия азота. Оксиды азота. Азотная кислота – окислитель. Фосфор.…
  • Инертные газы , Фастовский В.Г.. В книге рассмотрены основные физические и физико-химические свойства инертных газов гелия, неона, аргона, криптона и ксенона, а также области их применения в химической, металлургической,…

План.

  1. Физические свойства.
  2. Химические свойства.
  3. История открытия инертных газов.
  4. Область применения.
  5. Действие на организм человека.

1. Физические свойства инертных газов.

Инертные газы не имеют цвета и запаха. И являются одноатомными. Инертные газы считаются благородными. Обладают более высокой электропроводностью (по сравнению с другими) и, при прохождении через них тока, ярко светятся.

Неон - огненно красным светом, так как его самые яркие линии находятся в красной области спектра.

Гелий - ярко-жёлтым светом, это объясняется тем, что в его сравнительно простом спектре, двойная жёлтая линия преобладает над всеми другими.

Инертные газы имеют более низкие точки сжижения и замерзания, по сравнению с другими газами с тем же молекулярным весом. Это происходит из-за насыщенного характера атомных молекул инертных газов.

2. Химические свойства инертных газов.

Инертные газы обладают очень малой химической активностью, что объясняется жёсткой восьмиэлектронной конфигурацией внешнего электронного слоя. Как известно с увеличением числа электронных слоёв поляризуемость атомов растёт. Следовательно, она должна увеличиваться при переходе от гелия к радону.

Долгое время ученые вообще не находили условий, при которых благородные газы могли бы вступать в химическое взаимодействие или образовывать истинные химические соединения. Их валентность равнялась нулю. И новую группу химических решили считать нулевой.

Но 1924 году высказалась идея, что некоторые соединения тяжелых инертных газов (в частности, фториды и хлориды ксенона) термодинамически вполне стабильны и могут существовать при обычных условиях. В теории, при изучении электронной структуры оболочек криптона и ксенона с позиций квантовой механики, получалось, что эти газы в состоянии образовывать устойчивые соединения с фтором.

Но шло время, а на практике все эксперименты в этой области оканчивались неудачей. Фторид ксенона не получался. Постепенно пришли к выводу, что это не возможно и опыты прекратились.

Только в 1961 году Бартлетт, сотрудник одного из университетов Канады, изучая свойства гексафторида платины, соединения более активного, чем сам фтор, установил, что потенциал ионизации у ксенона ниже, чем у кислорода (12, 13 и 12, 20 эв соответственно), а кислород образовывал с гексафторидом платины соединение состава O2PtF6...

При комнатной температуре Бартлетт првел опыт и из газообразного гексафторида платины и газообразного ксенона получил твердое оранжево - желтое вещество, получившее название гексафторплатинат ксенона XePtF6..

При нагревании в вакууме гексафторплатинат XePtF6 возгоняется без разложения. Гидролизуется в воде, выделяя ксенон:

2XePtF6 + 6Н2О = 2Хе + О2 + 2PtО2 + 12HF

Исследуя новое вещество Бартлетт пришел к выводу, что поведение гексафторплатината ничем не отличается от поведения обычных химических соединений.

Работы Бартлетта позволили установить, что ксенон в зависимости от условий реакции, способен образовывать два разных соединения с гексафторидом платины: XePtF6 и Xe(PtF6)2. Но при гидролизе этих соединений получаются одни и те же конечные продукты.

В 1962 году Бартлетт выступает с докладом.

И уже через три недели после его опытов, эксперимент повторила группа американских исследователей в Аргоннской национальной лаборатории во главе с Черником. Ученым впервые удалось синтезировать аналогичные соединения ксенона с гексафторидами рутения, родия и плутония.

Итак, первые пять соединений ксенона: XePtF6, Xe (PtF6)2, XeRuF6, XeRhF6, XePuF6

Миф об абсолютной инертности газов не подтвердился.

Существовавшую гипотезу о возможности прямого взаимодействия ксенона с Фтором решили проверить.

Для этой цели смесь газов (1 часть ксенона и 5 частей фтора) поместили в никелевый сосуд, как наиболее устойчивый к действию фтора, и нагрели под сравнительно небольшим давлением.

Через час сосуд резко охладили, а газ откачали. Оставшимся газом оказалось не что иное, как фтор. Весь ксенон прореагировал!

После во вскрытом сосуде обнаружили бесцветные кристаллы тетрафторида ксенона XeF4.

Это устойчивое соединение, его молекула имеет форму квадрата с ионами фтора по углам и ксеноном в центре.

Тетрафторид ксенона XeF4 фторирует ртуть, платину(но только растворенным во фтористом водороде):ХеF4 + 2Hg = Хe + 2HgF2

Замечательно то, что, меняя условия реакции, можно получить не только XeF4, но и другие фториды, например XeF2, XeF6.

В. М. Хуторецкий и В. А. Шпанский - советские ученые-химики, показали, что для синтеза дифторида ксенона совсем не обязательны жесткие условия.

Ими был предложен способ, когда смесь ксенона и фтора (в молекулярном отношении 1:1) подается в сосуд из никеля или нержавеющей стали, и при повышении давления до 35 атм начинается самопроизвольная реакция.

XeF2 - единственный фторид ксенона, получаемый под действием электрического разряда на смесь ксенона и четырехфтористого углерода, без использования элементарного фтора.

Чистый ХеF2 получается, при облучении ксенона и фтора ультрафиолетом.

Дифторид ХеF2 обладает резким специфическим запахом.

Растворимость дифторида в воде невелика. Его раствор - сильнейший окислитель. Постепенно он саморазлагается на ксенон, кислород и фтористый водород. В щелочной среде разложение идет особенно быстро.

Метод синтеза дифторида ксенона, основанный на воздействии на смесь газов ультрафиолетового излучения (длина волн порядка 2500-3500 А) представляет большой теоретический интерес.

Излучение вызывает расщепление молекул фтора на свободные атомы. И именно в этом заключается причина образования дифторида, т.к. атомарный фтор необычайно активен.

Для получения гексафторида ксенона XeF6 требуются более жесткие условия: 700° С и 200 атм. При таких условиях в смеси ксенона и фтора, в отношение от 1:4 до 1:20, практически весь ксенон превращается в XeF6.

Гексафторид ксенона чрезвычайно активен и разлагается со взрывом.

Легко реагирует с фторидами щелочных металлов (кроме LiF):XeF6 + RbF = RbXeF7

Уже при 50° С эта соль разлагается:2RbXeF7 = XeF6 + Rb2XeF8

Высший фторид XeF8 устойчив лишь при температуре ниже минус 196° C.

Если прежде благородные газы были выделены в отдельную нулевую группу, что вполне отвечало представлению об их валентности, то синтез первых соединений ксенона поставил перед химиками вопрос о месте инертных газов в периодической системе. Инертные газы решили перенести в VIII группу, когда стал известен его высший фторид, в котором валентность ксенона равна восьми, что вполне согласуется со строением его электронной оболочки.

Все известные ныне соединения ксенона получены из его фторидов. Заставить ксенон вступить в реакцию без участия фтора (или некоторых его соединений) пока не удалось.

Хорошо изучено взаимодействие фторидов ксенона с водой.

При гидролизе ХеF4 в кислой среде, образуется окись ксенона ХеО3 - бесцветные, расплывающиеся на воздухе кристаллы.

Молекула ХеО3 имеет структуру приплюснутой треугольной пирамиды с атомом ксенона в вершине.

Это крайне неустойчивое соединение, при разложении мощность взрыва приближается к мощности взрыва тротила. Поэтому достаточно несколько сотен миллиграммов ХеО3, чтобы эксикатор разнесло в куски.

В перспективе предполагается использование трехокиси ксенона в качестве взрывчатки. Такая взрывчатка была бы очень удобна, потому что все продукты взрывной реакции - газы. Пока же использовать для этой цели трехокись ксенона слишком дорого из-за небольших запасов в атмосфере и технических сложностей.

Для получения 1 м3 ксенона нужно переработать 11 млн. м3 воздуха.

Соответствующая трехокиси неустойчивая кислота шестивалентного ксенона H6XeO6 образуется в результате гидролиза XeF6 при температуре 0° С:

XeF6 + 6H2О = 6HF + H6XeO6

Если к продуктам этой реакции быстро добавить Ва (ОН)2, выпадает белый аморфный

осадок Ва3ХеО6. При 125° С он разлагается на окись бария, ксенон и кислород.

Получены аналогичные соли-ксенонаты натрия и калия.

Под действием озона из раствора ХеО3 в одномолярном едком натре образуется соль высшей кислоты ксенона Na4ХеО6. Перксенонат натрия может быть выделен в виде бесцветного кристаллогидрата Na4XeO6 · 6Н2О. Также к образованию перксенонатов приводит гидролиз XeF6 в гидроокисях натрия и калия.

Достаточно обработать твердую соль Na4XeO6 раствором нитрата свинца, серебра или уранила и получаются соответствующие перксенонаты:

Ag4XeO6 - черного, bXeO6 и (UO2) 2XeO6 - желтого цвета.

Аналогичные соли дают калий, кальций, литий, цезий,.Взаимодействием Na4XeO6 с безводной охлажденной серной кислотой, получают окисел, соответствующий высшей кислоте ксенона – четырехокись ХеO4.

Как и в октафториде, валентность ксенона равна восьми.

Твердая четырехокись при температуре выше 0° С разлагается на ксенон и кислород, а газообразная (при комнатной температуре) - на трехокись ксенона, ксенон и кислород.

Молекула ХеO4 имеет форму тетраэдра с атомом ксенона в центре. В зависимости от условий гидролиз гексафторида ксенона может идти двумя путями:

  1. получается тетраоксифторид XeOF4,
  2. получается диоксифторид XeO2F2.

Прямой синтез из элементов приводит к образованию оксифторида ХеОF2.

Недавно изучена реакция дифторида ксенона с безводной НС1O4.

Получено новое соединение ксенона ХеСlO4 - мощный окислитель, в результате этой реакции, самый сильный из всех перхлоратов. Синтезированы соединения ксенона, не содержащие кислорода.

Это двойные соли, продукты взаимодействия фторидов ксенона с фторидами сурьмы, мышьяка, бора, тантала: XeF2 · SbF5, ХеF6 · AsF3, ХеF6 · ВF3 и ХеF2 · 2ТаF5.

И наконец, получены вещества типа XeSbF6, устойчивые при комнатной температуре, и XeSiF6 - нестойкий комплекс. На сегодняшний день удалось установить, что радон также взаимодействует с фтором, образуя нелетучие фториды.

Выделены и изучены дифторид KrF2 и тетрафторид для криптона KrF4 по свойствам, напоминающим соединения ксенона. 4. История открытия инертных газов.К благородным газам относятся гелий, неон, аргон, криптон, ксенон и радон. По своим свойствам они не похожи ни на какие другие элементы и в периодической системе располагаются между типичными металлами и неметаллами.

История открытия инертных газов представляет большой интерес: во-первых, как триумф введённых Ломоносовым количественных методов химии(открытие аргона), а во-вторых, как триумф теоретического предвидения (открытие остальных инертных газов), опирающегося на величайшее обобщение химии – периодический закон Менделеева.

Открытие физиком Рэлеем и химиком Рамзаем первого благородного газа – аргона – произошло в то время, когда построение периодической системы казалось завершённым и в ней оставалось лишь несколько пустых клеток.

Ещё 1785 году английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось.

Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал “Nature” обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин...

Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически.

Воздух, при помощи раскалённой меди был лишён своего кислорода и затем нагрет с кусочками магния в трубочке. После того как значительное количество азота было поглощено магнием, была определена плотность остатка.

Плотность оказалась в 15 раз больше плотности водорода, тогда как плотность азота только в 14 раз больше её. Эта плотность возрастала ещё по мере дальнейшего поглощения азота, пока не достигла 18.

Так было доказано, что воздух содержит газ, плотность которого больше плотности азота… Получили 100 см3 этого вещества с плотностью равной 19,9. Оно оказалось одноатомным газом.

Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную - почти процент! Кстати, именно в этот день и час, 13 августа 1894 года, аргон и получил свое имя, которое в переводе с греческого значит “недеятельный”.

Гелий впервые был идентифицирован как химический элемент в 1868 П.Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж.Локьер и П.Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э.Франкленд назвали новый элемент гелием от греч. “гелиос”, что означает солнце.

В то время не знали, что гелий – инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле. В 1895, через несколько месяцев после открытия аргона, У.Рамзай и почти одновременно шведские химики П.Клеве и Н.Ленгле установили, что гелий выделяется при нагревании минерала клевеита.

Год спустя Г.Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э.Резерфорд и Т.Ройдс установили, что a-частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия.

После этого открытия Рамзай пришёл к выводу, что существует целая группа химических элементов, которая располагается в периодической системе между щелочными металлами и галогенами. Пользуясь периодическим законом и методом Менделеева, было определено количество неизвестных благородных газов и их свойства, в частности их атомные массы. Это позволило осуществить и целенаправленные поиски благородных газов.

Рамзай и его сотрудники в поисках инертных газов занялись минералами, природными водами, даже метеоритами. Однако, все было безрезультатно, анализы неизменно оказывались отрицательными.

Между тем - новый газ в них был, но используемые методы,не были достаточно чувствительными и эти “микроследы” не улавливались.

Начав исследовать воздух, всего за четыре последующих года было открыто четыре новых элемента, а такие газы, как неон, криптон и ксенон были даже выделены из воздуха.

Для этого, воздух, очищенный предварительно от углекислоты и влаги, сжижали, а затем начинали медленно испарять. При этой процедуре более легкие газы улетучиваются и оставшиеся после испарения тяжелые инертные газы рассортировывают.

Полученные фракции подвергались различным исследованиям.

Рассмотрим спектральный анализ, как один из методов определения:

Это несложная процедура позволяет безошибочно идентифицировать инертные газа по линиям спектра.

Для этого газ помещается в разрядную трубку, к которой подключен ток.

Когда в разрядную трубку поместили первую, самую легкую и низкокипящую фракцию воздуха, то в спектре наряду с известными линиями азота, гелия и аргона были обнаружены новые линии, из них особенно яркими были красные и оранжевые. Они придавали свету в трубке огненную окраску. Интересна история названия этого газа:

Когда Рамзай наблюдал, в очередном опыте, спектр только что полученного газа, в лабораторию вошел его двенадцатилетний сын, успевший стать “поклонником” отцовых работ. Увидев необычное свечение, он воскликнул: “new one!” , что по-древнегречески значит “новый”.

Так возникло название газа “неон”.

Найти инертные газы, завершающие четвёртый, пятый и шестой периоды таблицы Менделеева удалось не сразу, хотя после того как были открыты гелий, неон и аргон, завершающие три первых периода таблицы Менделеева, в их существовании сомнений не было.

Но к тому времени научились получать значительные количества жидкого воздуха, во много благодаря стараниям английского ученого Траверса.

Стал доступен даже жидкий водород.

И Рамзай совместно с Траверсом смогли заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона.

Остаток одержал сырой (неочищенный) криптон. И после откачки его в сосуде неизменно оставался пузырек газа. Этот газ давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой и имел голубоватое свечение в электрическом разряде. Как известно, по спектральным линиям можно безошибочно идентифицировать элемент. И У Рамзая и Траверса были все основания считать, что открыт новый инертный газ.

Он получил название - ксенон, что в переводе с греческого значит “чужой”. Ведь действительно, в криптоновой фракции воздуха он выглядел чужаком.

В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха. Содержание ксенона в атмосфере крайне мало, но именно воздух - практически единственный и неисчерпаемый источник ксенона (почти весь ксенон возвращается в атмосферу).

Индивидуальность ксенона как нового химического элемента установили, оперируя всего 0,2 см3 этого газа.

Рамзаю так же принадлежит заслуга открытия высшего представителя инертных газов. Используя тонкие технические приёмы, он доказал, что радиоактивное истечение из радия – эманация радия – представляет собой газ, подчиняющийся всем законам обычных газов, химически инертный и обладающий характерным спектром. Рамзай измерил скорость диффузии, что позволило установить молекулярный вес газа, составляющий примерно 220:

Исходя из предположения, что ядро атома эманации радия – это остаток ядра радия после выбрасывания из него ядра атома гелия (a –частицы), то выходит, что заряд его должен быть равен 88-2=86. Таким образом, новый элемент должен действительно быть инертным газом. А его атомный вес 226-4=222. Официально было решено включить в периодическую систему новую группу химических элементов 16 марта 1900 года, после встречи Рамзая с Менделеевым.

  1. Область применения инертных газов.

Гелий - источник низких температур.

Жидкий гелий используется при изучении многих явлений, например, сверхпроводимость в твердом состоянии. Тепловое движение атомов и свободных электронов в твердых телах практически отсутствует при температуре жидкого гелия.

Кроме того, жидкий гелий выгоден для охлаждения магнитных сверхпроводников, ускорителей частиц и других устройств. Довольно необычным применением гелия в качестве хладагента, является процесс непрерывного смешения 3He и 4He, для создания и поддержания температур ниже 0,005 K

Газообразный гелий используют как легкий газ для наполнения воздушных шаров.

Поскольку он не горюч, его используют для заполнения оболочки дирижабля, добавляя к водороду.

Гелий используют как инертную среду для дуговой сварки, особенно магния и его сплавов, при получении Si, Ge, Ti и Zr, для охлаждения ядерных реакторов.

Другие применения гелия – для газовой смазки подшипников, в счетчиках нейтронов (гелий-3), газовых термометрах, рентгеновской спектроскопии, для хранения пищи, в переключателях высокого напряжения. В смеси с другими благородными газами гелий используется в наружной неоновой рекламе (в газоразрядных трубках).

Большие количества гелия применяют в дыхательных смесях для работ под давлением, так как гелий хуже растворим в крови, чем азот. Например при морских погружениях, при создании подводных тоннелей и сооружений.

При использовании гелия, выделение растворенного газа из крови, декомпрессия, у водолаза протекает менее болезненно, менее вероятна кессонная болезнь, Полностью исключено такое явление, как азотный наркоз, – постоянный и опасный спутник работы водолаза.

Смеси He–O2 применяют, благодаря их низкой вязкости, для снятия приступов астмы и для лечения различных заболеваниях дыхательных путей.

Аргон широко применяется на производстве.

Очень удобна дуговая электросварка в среде аргона, т.к. в аргонной струе можно сваривать тонкостенные изделия и металлы, которые прежде считались трудносвариваемыми. Считается, что электрическая дуга в аргонной атмосфере внесла переворот в технику резки металлов. Процесс намного ускорился, появилась возможность резать толстые листы самых тугоплавких металлов.

Продувкой аргона через жидкую сталь из нее удаляют газовые включения. Это улучшает свойства металла. Продуваемый вдоль столба дуги аргон (в смеси с водородом) предохраняет кромки разреза и вольфрамовый электрод от образования окисных, нитридных и иных пленок. Одновременно он сжимает и концентрирует дугу на малой поверхности, отчего температура в зоне резки достигает 4000-6000° С.

Кроме того газовая струя выдувает продукты резки.

А при сварке в аргонной струе нет надобности во флюсах и электродных покрытиях, а стало быть, и в зачистке шва от шлака и остатков флюса.

Применения ксенона, зачастую основано на его способности вступать в реакцию со фтором.

В медицине ксенон получил распространение при рентгеноскопических обследованиях головного мозга. Применяющаяся при просвечивании кишечника (ксенон сильно поглощает рентгеновское излучение и помогает найти места поражения). При этом он совершенно безвреден.

А активный изотоп ксенона, ксенон - 133, используют при исследовании функциональной деятельности легких и сердца.

В светотехнике широко используются ксеноновые лампы высокого давления. Принцип действия основан на том, что в таких лампах светит дуговой разряд в ксеноне, находящемся под давлением в несколько десятков атмосфер.

Свет в таких лампах ярок и имеет непрерывный спектр - от ультрафиолетового до ближней области инфракрасного, и появляется он сразу после включения.

6. Действие на организм человека.

Было бы естественно полагать, что благородные газы не должны влиять на живые организмы, потому как инертны химически. Однако это не совсем так. В с меси с кислородом вдыхание высших инертных газов приводит человека в состояние, сходное с алкогольным опьянением. Такое наркотическое действие инертных газов обуславливается растворением их в нервных тканях. И чем выше атомный вес инертного газа, тем выше его растворимость, и тем большее наркотическое действие он способен оказывать.

Список литературы.

  1. Гузей Л.С. Лекции по общей химии
  2. Ахметов Н.С. “Общая и неорганическая химия”
  3. Петров М.М., Михилев Л.А., Кукушкин Ю.Н. “Неорганическая химия”
  4. Некрасов Б.В. “Учебник общей химии”
  5. Глинка Н.Л. “Общая химия”
  1. История открытия инертных газов……………………………………………………………………….2
  2. Физические свойства инертных газов………………………………………………………………….4
  3. Физиологическое действие инертных газов…………………………………………………………..4
  4. Химические свойства инертных газов………………………………………………………………….4
  5. Применение инертных газов……………………………………………………………………………..7
  6. Список литературы…………………………………………………………………………………………8

История открытия инертных газов.

К благородным газам относятся гелий, неон, аргон, криптон, ксенон и радон. По своим свойствам они не похожи ни на какие другие элементы и в периодической системе располагаются между типичными металлами и неметаллами. История открытия инертных газов представляет большой интерес: во-первых, как триумф введённых Ломоносовым количественных методов химии (открытие аргона), а во-вторых, как триумф теоретического предвидения (открытие остальных инертных газов), опирающегося на величайшее обобщение химии — периодический закон Менделеева.Открытие физиком Рэлеем и химиком Рамзаем первого благородного газа — аргона — произошло в то время, когда построение периодической системы казалось завершённым и в ней оставалось лишь несколько пустых клеток. Ещё 1785 году английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось. Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал «Nature» обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин… Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически. “Воздух при помощи раскалённой меди был лишён своего кислорода и затем нагрет с кусочками магния в трубочке. После того как значительное количество азота было поглощено магнием, была определена плотность остатка. Плотность оказалась в 15 раз больше плотности водорода, тогда как плотность азота только в 14 раз больше её. Эта плотность возрастала ещё по мере дальнейшего поглощения азота, пока не достигла 18. Этим было доказано, что воздух содержит газ, плотность которого больше плотности азота… Я получил 100 см3 этого вещества и нашёл его плотность равной 19,9. Оно оказалось одноатомным газом”. Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную — почти процент! Кстати, именно в этот день и час, 13 августа 1894 года, аргон и получил свое имя, которое в переводе с греческого значит «недеятельный». Гелий впервые был идентифицирован как химический элемент в 1868 П. Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж. Локьер и П. Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э. Франкленд назвали новый элемент гелием от греч. «гелиос», что означает солнце. В то время не знали, что гелий — инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле. В 1895, через несколько месяцев после открытия аргона, У. Рамзай и почти одновременно шведские химики П. Клеве и Н. Ленгле установили, что гелий выделяется при нагревании минерала клевеита. Год спустя Г. Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э. Резерфорд и Т. Ройдс установили, что?-частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия. После этого открытия Рамзай пришёл к выводу, что существует целая группа химических элементов, которая располагается в периодической системе между щелочными металлами и галогенами. После этого открытия Рамзай пришёл к выводу, что существует целая группа химических элементов, которая располагается в периодической системе между щелочными металлами и галогенами. Пользуясь периодическим законом и методом Менделеева, было определено количество неизвестных благородных газов и их свойства, в частности их атомные массы. Это позволило осуществить и целенаправленные поиски благородных газов. Вначале Рамзай и его сотрудники занялись минералами, природными водами, даже метеоритами. Результаты анализов неизменно оказывались отрицательными. Между тем, теперь мы это знаем — новый газ в них был. Но методами, существовавшими в конце прошлого века, эти «микроследы» не улавливались. Затем исследователи обратились к воздуху. Всего за четыре последующих года было открыто четыре новых элемента, при этом неон, криптон и ксенон были выделены из воздуха. Воздух, очищенный предварительно от углекислоты и влаги, сжижали, а затем начинали медленно испарять. Сначала «летят» более легкие газы. После испарения основной массы воздуха рассортировывают оставшиеся тяжелые инертные газы. Затем, полученные фракции исследовали. Одним из методов поиска был спектральный анализ: газ помещали в разрядную трубку, подключали ток и по линиям спектра определяли «кто есть кто». Когда в разрядную трубку поместили первую, самую легкую и низкокипящую фракцию воздуха, то в спектре наряду с известными линиями азота, гелия и аргона были обнаружены новые линии, из них особенно яркими были красные и оранжевые. Они придавали свету в трубке огненную окраску. В момент, когда Рамзай наблюдал спектр только что полученного газа, в лабораторию вошел его двенадцатилетний сын, успевший стать «болельщиком» отцовых работ. Увидев необычное свечение, он воскликнул: «new one!» Так возникло название газа «неон», по-древнегречески значит «новый». После того как были открыты гелий, неон и аргон, завершающие три первых периода таблицы Менделеева, уже не вызывало сомнений, что четвёртый, пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и неудивительно: в 1 м3 воздуха 9, 3 л аргона и всего лишь 0, 08 мл ксенона. Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон (“скрытый”). Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой. Характерные спектральные линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком. В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха; индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см3 этого газа. Необычайная для того времени тонкость эксперимента! Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу. Заслуга открытия высшего представителя инертных газов принадлежит тому же Рамзаю. При помощи весьма тонких технических приёмов он доказал, что радиоактивное истечение из радия — эманация радия — представляет собой газ, подчиняющийся всем законам обычных газов, химически инертный и обладающий характерным спектром. Его молекулярный вес — около 220 — был Рамзаем измерен по скорости диффузии. Если предположить, что ядро атома эманации радия — это остаток ядра радия после выбрасывания из него ядра атома гелия — ?-частицы, то заряд его должен быть равен 88-2=86, т. е. новый элемент должен действительно быть инертным газом с атомным весом 226-4=222. Таким образом, после блестящих экспериментов 16 марта 1900 г. в Лондоне произошла встреча Менделеева и Рамзая, на которой было официально решено включить в периодическую систему новую группу химических элементов.