Определить суммарный импульс шаров после столкновения. Столкновение тел

Импульс - это физическая величина, которая в определенных условиях остается постоянной для системы взаимодействующих тел. Модуль импульса равен произведению массы на скорость (p = mv). Закон сохранения импульса формулируется так:

В замкнутой системе тел векторная сумма импульсов тел остается постоянной, т. е. не изменяется. Под замкнутой понимают систему, где тела взаимодействуют только друг с другом. Например, если трением и силой тяжести можно пренебречь. Трение может быть мало, а сила тяжести уравновешиваться силой нормальной реакции опоры.

Допустим, одно движущееся тело сталкивается с другим таким же по массе телом, но неподвижным. Что произойдет? Во-первых столкновение может быть упругим и неупругим. При неупругом столкновении тела сцепляются в одно целое. Рассмотрим именно такое столкновение.

Поскольку массы тел одинаковы, то обозначим их массы одинаковой буквой без индекса: m. Импульс первого тела до столкновения равен mv 1 , а второго равен mv 2 . Но так как второе тело не движется, то v 2 = 0, следовательно, импульс второго тела равен 0.

После неупругого столкновения система из двух тел продолжит двигаться в ту сторону, куда двигалось первое тело (вектор импульса совпадает с вектором скорости), а вот скорость станет в 2 раза меньшей. То есть масса увеличится в 2 раза, а скорость уменьшится в 2 раза. Таким образом, произведение массы на скорость останется прежним. Разница только в том, что до столкновения скорость была в 2 раза больше, но масса была равна m. После столкновения масса стала 2m, а скорость в 2 раза меньше.

Представим, что неупруго сталкиваются два тела, движущихся навстречу друг другу. Векторы их скоростей (также как и импульсов) направлены в противоположные стороны. Значит, модули импульсов надо вычитать. После столкновения система из двух тел продолжит двигаться в ту сторону, куда двигалось тело, обладающее большим импульсом до столкновения.

Например, если одно тело было массой 2 кг и двигалось со скоростью 3 м/с, а другое - массой 1 кг и скоростью 4 м/с, то импульс первого равен 6 кг · м/с, а импульс второго равен 4 кг · м/с. Значит, вектор скорости после столкновения будет сонаправлен с вектором скорости первого тела. А вот значение скорости можно вычислить так. Суммарный импульс до столкновения был равен 2 кг · м/с, так как векторы разнонаправлены, и мы должны вычитать значения. Таким же он должен остаться и после столкновения. Но после столкновения масса тела увеличилась до 3 кг (1 кг + 2 кг), значит из формулы p = mv следует, что v = p/m = 2/3 = 1,6(6) (м/с). Мы видим, что в результате столкновения скорость уменьшилась, что согласуется с нашим житейским опытом.

Если два тела движутся в одну сторону и одно из них нагоняет второе, толкает его, сцепляясь с ним, то как изменится скорость этой системы тел после столкновения? Допустим, тело массой 1 кг двигалось со скоростью 2 м/с. Его догнало и сцепилось с ним тело массой 0,5 кг, двигающееся со скоростью 3 м/с.

Так как тела двигаются в одну сторону, то импульс системы этих двух тел равен сумме импульсов каждого тела: 1 · 2 = 2 (кг · м/с) и 0,5 · 3 = 1,5 (кг · м/с). Суммарный импульс равен 3,5 кг · м/с. Он должен сохраниться и после столкновения, но масса тела здесь будет уже 1,5 кг (1 кг + 0,5 кг). Тогда скорость будет равна 3,5/1,5 = 2,3(3) (м/с). Эта скорость больше, чем скорость первого тела, и меньше, чем скорость второго. Это и понятно, первое тело подтолкнули, а второе, можно сказать, столкнулось с препятствием.

Теперь представим, что два тела изначально сцеплены. Некая равная сила расталкивает их в разные стороны. Каковы будут скорости тел? Поскольку для каждого тела применена равная сила, то модуль импульса одного должен быть равен модулю импульса другого. Однако векторы разнонаправлены, поэтому при их сумма будет равна нулю. Это и правильно, т. к. до разъезжания тел их импульс был равен нулю, ведь тела покоились. Так как импульс равен произведению массы на скорость, то в данном случае понятно, что чем массивнее тело, тем меньше будет его скорость. Чем легче тело, тем больше будет его скорость.

Начну с пары определений, без знания которых дальнейшее рассмотрение вопроса будет бессмысленным.

Сопротивление, которое оказывает тело при попытке привести его в движение или изменить его скорость, называется инертностью.

Мера инертности – масса .

Таким образом можно сделать следующие выводы:

  1. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются вывести его из состояния покоя.
  2. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются изменить его скорость в случае, если тело движется равномерно.

Резюмируя можно сказать, что инертность тела противодействует попыткам придать телу ускорение. А масса служит показателем уровня инертности. Чем больше масса, тем большую силу нужно применить для воздействия на тело, чтобы придать ему ускорение.

Замкнутая система (изолированная) – система тел, на которую не оказывают влияние другие тела не входящие в эту систему. Тела в такой системе взаимодействуют только между собой.

Если хотя бы одно из двух условий выше не выполняется, то систему замкнутой назвать нельзя. Пусть есть система, состоящая из двух материальных точек, обладающими скоростями и соответственно. Представим, что между точками произошло взаимодействие, в результате которого скорости точек изменились. Обозначим через и приращения этих скоростей за время взаимодействия между точками . Будем считать, что приращения имеют противоположные направления и связаны соотношением . Мы знаем, что коэффициенты и не зависят от характера взаимодействия материальных точек — это подтверждено множеством экспериментов. Коэффициенты и являются характеристиками самих точек. Эти коэффициенты называются массами (инертными массами). Приведенное соотношения для приращения скоростей и масс можно описать следующим образом.

Отношение масс двух материальных точек равно отношению приращений скоростей этих материальных точек в результате взаимодействия между ними.

Представленное выше соотношение можно представить в другом виде. Обозначим скорости тел до взаимодействия как и соответственно, а после взаимодействия — и . В этом случае приращения скоростей могут быть представлены в таком виде — и . Следовательно, соотношение можно записать так — .

Импульс (количество энергии материальной точки) – вектор равный произведению массы материальной точки на вектор ее скорости —

Импульс системы (количество движения системы материальных точек) – векторная сумма импульсов материальных точек, из которых эта система состоит — .

Можно сделать вывод, что в случае замкнутой системы импульс до и после взаимодействия материальных точек должен остаться тем же — , где и . Можно сформулировать закон закон сохранения импульса.

Импульс изолированной системы остается постоянным во времени, независимо от взаимодействия между ними.

Необходимое определение:

Консервативные силы – силы, работа которых не зависит от траектории, а обусловлена только начальными и конечными координатами точки.

Формулировка закона сохранения энергии:

В системе, в которой действуют только консервативные силы, полная энергия системы остается неизменной. Возможны лишь превращения потенциальной энергии в кинетическую и обратно.

Потенциальная энергия материальной точки является функцией только координат этой точки. Т.е. потенциальная энергия зависит от положения точки в системе. Таким образом силы , действующие на точку, можно определить так: можно определить так: . – потенциальная энергия материальной точки. Помножим обе части на и получим . Преобразуем и получим выражение доказывающее закон сохранения энергии .

Упругие и неупругие столкновения

Абсолютно неупругий удар – столкновение двух тел, в результате которого они соединяются и далее двигаются как одно целое.

Два шара , с и испытывают абсолютно неупругий дар друг с другом. По закону сохранения импульса . Отсюда можно выразить скорость двух шаров, двигающихся после соударения как единое целое — . Кинетические энергии до и после удара: и . Найдем разность

,

где – приведенная масса шаров . Отсюда видно, что при абсолютно неупругом столкновении двух шаров происходит потеря кинетической энергии макроскопического движения. Эта потеря равна половине произведения приведенной массы на квадрат относительной скорости.

Закон сохранения энергии позволяет рецдать механические задачи в тех случаях, когда почему-либо неизвестны действующие на тело хилы. Интересным примером именно такого случая является столкновение двух тел. Этот пример особенно интересен тем, что при его анализе нельзя обойтись одним только законом сохранения энергии. Нужно привлечь еще и закон сохранения импульса (количества движения).

В обыденной жизни и в технике не так уж часто приходится иметь дело со столкновениями тел, но в физике атома и атомных частиц столкновения - очень частое явление.

Для простоты мы сначала рассмотрим столкновение двух шаров массами из которых второй покоится, а первый движется по направлению ко второму со скоростью Будем считать, что движение происходит вдоль линии, соединяющей центры обоих шаров (рис. 205), так что при столкновении шаров имеет место так называемый центральный, или лобовой, удар. Каковы скорости обоих шаров после столкновения?

До столкновения кинетическая энергия второго шара равна нулю, а первого . Сумма энергий обоих шаров составляет:

После столкновения первый шар станет двигаться с некоторой скоростью Второй шар, скорость которого была равна нулю, также получит какую-то скорость Поэтому после столкновения сумма кинетических энергий двух шаров станет равной

По закону сохранения энергии эта сумма должна быть равна энергии шаров до столкновения:

Из этого одного уравнения мы, конечно, не можем найти две неизвестные скорости: Вот тут-то на помощь и приходит второй закон сохранения - закон сохранения импульса. До столкновения шаров импульс первого шара был равен а импульс второго - нулю. Полный импульс двух шаров был равен:

После столкновения импульсы обоих шаров изменились и стали равными а полный импульс стал

По закону сохранения импульса полный импульс при столкновении измениться не может. Поэтому мы должны написать:

Так как движение происходит вдоль прямой, то вместо векторного уравнения можно написать алгебраическое (для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара):

Теперь мы имеем два уравнения:

Такую систему уравнений можно решить и найтн неизвестные скорости их и шаров после столкновения. Для этого перепишем ее следующим образом:

Разделив первое уравнение на второе, получим:

Решая теперь это уравнение совместно со вторым уравнением

(проделайте это самостоятельно), найдем, что первый шар после удара будет двигаться со скоростью

а второй - со скоростью

Если оба шара имеют одинаковые массы то Это значит, что первый шар, столкнувшись со вторым, передал ему свою скорость, а сам остановился (рис. 206).

Таким образом, пользуясь законами сохранения энергии и импульса, можно, зная скорости тел до столкновения, определить их скорости после столкновения.

А как обстояло дело во время самого столкновения в тот момент, когда центры шаров максимально сблизились?

Очевидно, что в это время они двигались вместе с некоторой скоростью . При одинаковых массах тел их общая масса равна 2т. По закону сохранения импульса во время совместного движения обоих шаров их импульс должен быть равен общему импульсу до столкновения:

Отсюда следует, что

Таким образом, скорость обоих шаров при их совместном движении равна половине

скорости одного из них до столкновения. Найдем кинетическую энергию обоих шаров для этого момента:

А до столкновения общая энергия обоих шаров была равна

Следовательно, в самый момент столкновения шаров кинетическая энергия уменьшилась вдвое. Куда же пропала половина кинетической энергии? Не происходит ли здесь нарушения закона сохранения энергии?

Энергия, конечно, и во время совместного движения шаров осталась прежней. Дело в том, что во время столкновения оба шара были деформированы и поэтому обладали потенциальной энергией упругого взаимодействия. Именно на величину этой потенциальной энергии и уменьшилась кинетическая энергия шаров.

Задача 1. Шар, имеющий массу равную 50 г, движется со скоростью и сталкивается с неподвижным шаром, масса которого Каковы скорости обоих шаров после столкновения? Столкновение шаров считать центральным.

При соударении тел друг с другом они претерпевают деформации

При соударении тел друг с другом они претерпевают деформации. При этом кинетическая энергия, которой обладали тела перед ударом, частично или полностью переходит в потенциальную энергию упругой деформации и в так называемую внутреннюю энергию тел. Увеличение внутренней энергии тел сопровождается повышением их температуры.

Существуют два предельных вида удара: абсолютно упругий и абсолютно неупругий. Абсолютно упругим называется такой удар, при котором механическая энергия тел не переходит в другие, немеханические, виды энергии. При таком ударе кинетическая энергия переходит полностью или частично в потенциальную энергию упругой деформации. Затем тела возвращаются к первоначальной форме отталкивая друг друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую энергию и тела разлетаются со скоростями, величина и направление которых определяются двумя условиями-сохранением полной энергии и сохранением полного импульса системы тел.

Абсолютно неупругий удар характеризуется тем, что потенциальной энергии деформации не возникает; кинетическая энергия тел полностью или частично превращается во внутреннюю энергию; после удара столкнувшиеся тела либо движутся с одинаковой скоростью, либо покоятся. При абсолютно неупругом ударе выполняется лишь закон сохранения импульса, закон же сохранения Механической энергии не соблюдается - имеет место закон сохранения суммарной энергии различных видов - механической и внутренней.

Мы ограничимся рассмотрением центрального удара двух шаров. Удар называется центральным, если шары до удара движутся вдоль прямой, проходящей через их центры. При центральном ударе соударение может произойти, если; 1) шары движутся навстречу друг другу (рис 70, а) и 2) одни из шаров догоняет другой (рис, 70,6).

Будем предполагать, что шары образуют замкнутую систему или что внешние силы, приложенные к шарам, уравновешивают друг друга.

Рассмотрим вначале абсолютно неупругий удар. Пусть массы шаров равны m 1 и m 2 , а скорости до удара V 10 и V 20. В силу закона сохранения суммарный импульс шаров после удара должен быть таким же, как и до удара:

Поскольку векторы v 10 и v 20 направлены вдоль одной и той же прямой, вектор v также имеет направление, совпадающее с этой прямой. В случае б) (см. рис. 70) он направлен в ту же сторону, что и векторы v 10 и v 20 . В случае а) вектор v направлен в сторону того из векторов v i0 , для которого произведение m i v i0 больше.

Модуль вектора v может быть вычислен по следующей формуле:

где υ 10 и υ 20 -модули векторов v 10 и v 20 ; знак «-» соответствует случаю а), знак «+» - случаю б).

Теперь рассмотрим абсолютно упругий удар. При таком ударе выполняются два закона сохранения: закон сохранения импульса и закон сохранения механической энергии.

Обозначим массы шаров m 1 и m 2 , скорости шаров до удара v 10 и v 20 и, наконец, скорости шаров после удара v 1 и v 2. Напишем уравнения сохранения импульса и энергии;

Учитывая, что , приведем (30.5) к виду

Умножая (30.8) на m 2 и вычитая результат из (30.6), а затем умножая (30.8) на m 1 и складывая результат с (30.6), получим векторы скоростей шаров после удара:

Для численных подсчетов спроектируем (30.9) на направление вектора v 10 ;

В этих формулах υ 10 и υ 20 -модули, а υ 1 и υ 2 - проекции соответствующих векторов. Верхний знак «-» соответствует случаю шаров, движущихся навстречу друг другу, нижний знак «+» - случаю, когда первый шар нагоняет второй.

Отметим, что скорости шаров после абсолютно упругого удара не могут быть одинаковыми. В самом деле, приравняв друг другу выражения (30.9) для v 1 и v 2 и произведя преобразования, получим:

Следовательно, для того чтобы скорости шаров после удара оказались одинаковыми, необходимо, чтобы они были одинаковыми и до удара, но в этом случае соударение не может произойти. Отсюда следует, что условие равенства скоростей шаров после удара несовместимо с законом сохранения энергии. Итак, при неупругом ударе механическая энергия не сохраняется - она частично переходит во внутреннюю энергию соударяющихся тел» что приводит к их нагреву.

Рассмотрим случай, когда массы соударяющихся шаров равны: m 1 =m 2 . Из (30.9) следует, что при этом условии

т. е. шары при соударении обмениваются скорости. В частности, если один из шаров одинаковой массы, например второй, до соударения покоится, то после удара он движется с такой же скоростью, какую использовал первоначально первый шар; первый же шар после удара оказывается неподвижным.

С помощью формул (30.9) можно определить скорость шара после упругого удара о неподвижную не движущуюся стенку (которую можно рассматривать как шар бесконечно большой массы m 2 и бесконечно большого радиуса). Деля числитель и знаменатель выражений (30,9) на m 2 и пренебрегая членами, содержащие множитель m 1 /m 2 получаем:

Как следует из полученного результата, скоро стенки остается неизменной. Скорость же шара, если стенка неподвижна (v 20 =0), меняет направление противоположное; в случае движущейся стенки изменяется также величина скорости шара (возрастает до 2υ 20 , если стенка движется навстречу шару, и убывает 2υ 20 , если стенка «уходит» от догоняющего ее шара)

Решение. Время спуска равно .

Правильный ответ: 4.

А2. В инерциальной системе отсчёта движутся два тела. Первому телу массой m сила F сообщает ускорение a . Чему равна масса второго тела, если вдвое меньшая сила сообщила ему в 4 раза бо́льшее ускорение?

1)
2)
3)
4)

Решение. Масса может быть рассчитана по формуле . Вдвое меньшая сила сообщает в 4 раза бо́льшее ускорение телу с массой .

Правильный ответ: 2.

А3. На какой стадии полёта в космическом корабле, который становится на орбите спутником Земли, будет наблюдаться невесомость?

Решение. Невесомость наблюдаться в условиях отсутствия всех внешних сил, за исключением гравитационных. В таких условиях находится космический корабль при орбитальном полете с выключенным двигателем.

Правильный ответ: 3.

А4. Два шара массами m и 2m движутся со скоростями, равными соответственно 2v и v . Первый шар движется за вторым и, догнав, прилипает к нему. Каков суммарный импульс шаров после удара?

1) mv
2) 2mv
3) 3mv
4) 4mv

Решение. По закону сохранения суммарный импульс шаров после удара равен сумме импульсов шаров до столкновения: .

Правильный ответ: 4.

А5. Четыре одинаковых листа фанеры толщиной L каждый, связанные в стопку, плавают в воде так, что уровень воды соответствует границе между двумя средними листами. Если в стопку добавить еще один такой же лист, то глубина погружения стопки листов увеличится на

1)
2)
3)
4)

Решение. Глубина погружения составляет половину высоты стопки: для четырёх ли­стов - 2L , для пяти листов - 2,5L . Глубина погружения увеличится на .

Правильный ответ: 3.


A6. На рисунке представлен график изме­нения со временем кинетической энергии ребёнка, качающегося на качелях. В мо­мент, соответствующий точке A на графи­ке, его потенциальная энергия, отсчитан­ная от положения равновесия качелей, равна

1) 40 Дж
2) 80 Дж
3) 120 Дж
4) 160 Дж

Решение. Известно, что в положении равновесия наблюдается максимум кинетической энергии, а разность потенциальных энергий в двух состояниях равна по модулю разности кинетических энергий. Из графика видно, что максимальная кинетическая энергия равна 160 Дж, а для точки А она равна 120 Дж. Таким образом, потенциальная энергия, отсчитанная от положения равновесия качелей, равна .

Правильный ответ: 1.

А7. Две материальные точки движутся по окружностям радиусами и с одинаковыми по модулю скоростями. Их периоды обращения по окружностям связаны соотношением

1)
2)
3)
4)

Решение. Период обращения по окружности равен . Поскольку , то .

Правильный ответ: 4.

А8. В жидкостях частицы совершают колебания возле положения равновесия, сталкиваясь с соседними частицами. Время от времени частица совершает «прыжок» к другому положению равновесия. Какое свойство жидкостей можно объяснить таким характером движения частиц?

Решение. Таким характером движения частиц жидкости объясняется её текучесть.

Правильный ответ: 2.

А9. Лёд при температуре 0 °C внесли в тёплое помещение. Температура льда до того, как он растает,

Решение. Температура льда до того, как он растает, не изменится, так как вся энергия, получаемая льдом в это время, расходуется на разрушение кристаллической решетки.

Правильный ответ: 1.

А10. При какой влажности воздуха человек легче переносит высокую температуру воздуха и почему?

Решение. Человек легче переносит высокую температуру воздуха при низкой влажности, так как при этом пот испаряется быстро.

Правильный ответ: 1.

А11. Абсолютная температура тела равна 300 К. По шкале Цельсия она равна

Решение. По шкале Цельсия она равна .

Правильный ответ: 2.

A12. На рисунке приведён график зависимости объёма идеального одноатомного газа от давления в процессе 1–2. Внутренняя энергия газа при этом увеличилась на 300 кДж. Количество теплоты, сообщенное газу в этом процессе, равно

Решение. КПД тепловой машины, совершаемая ею полезная работа и получаемое от нагревателя количество теплоты связаны равенством , откуда .

Правильный ответ: 2.

A14. Два одинаковых лёгких шарика, заряды которых равны по модулю, подвешены на шёлковых нитях. За­ряд одного из шариков указан на ри­сунках. Какой(-ие) из рисунков соот­ветствует(-ют) ситуации, когда заряд 2-го шарика отрицателен?

1) A
2) B
3) C и D
4) A и C

Решение. Указанный заряд шарика - отрицательный. Одноимённые заряды оттал­киваются. Отталкивание наблюдается на рисунке A .

Правильный ответ: 1.

A15. α-частица перемещается в однородном электростатическом поле из точки A в точку B по траекториям I, II, III (см. рис.). Работа сил электростатического поля

Решение. Электростатическое поле является потенциальным. В нём работа по переме­щению заряда не зависит от траектории, а зависит от положения начальной и конечной точек. Для нарисованных траекторий начальные и конечные точки совпадают, значит, и работы сил электростатического поля одинаковы.

Правильный ответ: 4.

A16. На рисунке изображен график зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?

Решение. В водном растворе соли ток создаётся только ионами.

Правильный ответ: 1.

А18. Электрон , влетевший в зазор между полюсами электромагнита, имеет горизонтально направленную ско­рость , перпендикулярную вектору индукции магнитного поля (см. рис.). Куда направлена действующая на элек­трон сила Лоренца?

Решение. Воспользуемся правилом «левой руки»: направим четыре пальца руки в сторону направления движения электрона (от себя), а ладонь развернём так, чтобы линии магнитного поля входили в неё (влево). Тогда оттопыренный большой палец покажет направление действующей силы (он будет направлен вниз), если бы частица была заряжена положительно. Заряд электрона отрицательный, значит, сила Лоренца будет направлена в противоположную сторону: вертикально вверх.

Правильный ответ: 2.

A19. На рисунке приведена демонстрация опыта по проверке правила Ленца. Опыт проводится со сплошным кольцом, а не разрезанным, потому что

Решение. Опыт проводится со сплошным кольцом, потому что в сплошном кольце возникает индукционный ток, а в разрезанном - нет.

Правильный ответ: 3.

А20. Разложение белого света в спектр при прохождении через призму обусловлено:

Решение. Используя формулу для линзы, определим положение изображения предмета:

Если на этом расстоянии расположить плоскость фотоплёнки, то получится чёткое изображение. Видно, что 50 мм

Правильный ответ: 3.

А22. Скорость света во всех инерциальных системах отсчёта

Решение. Согласно постулату специальной теории относительности скорость света во всех инерциальных системах отсчёта одинакова и не зависит ни от скорости приёмника света, ни от скорости источника света.

Правильный ответ: 1.

А23. Бета-излучение - это

Решение. Бета-излучение - это поток электронов.

Правильный ответ: 3.

А24. Реакция термоядерного синтеза идёт с выделением энергии, при этом:

А. Сумма зарядов частиц - продуктов реакции - точно равна сумме зарядов исходных ядер.

Б. Сумма масс частиц - продуктов реакции - точно равна сумме масс исходных ядер.

Верны ли приведенные выше утверждения?

Решение. Заряд сохраняется всегда. Поскольку реакция идёт с выделением энергии, сум­марная масса продуктов реакции меньше суммарной массы исходных ядер. Верно только А.

Правильный ответ: 1.

A25. К подвижной вертикальной стенке приложили груз массой 10 кг. Коэффициент трения между грузом и стенкой равен 0,4. С каким минимальным ускорением надо передвигать стенку влево, чтобы груз не соскользнул вниз?

1)
2)
3)
4)

Решение. Чтобы груз не соскользнул вниз, нужно чтобы сила трения между грузом и стенкой уравновесила силу тяжести: . Для неподвижного относительно стенки груза верно соотношение , где μ - коэффициент трения, N - сила реакции опоры, которая по второму закону Ньютона связана с ускорением стенки равенством . В итоге получаем:

Правильный ответ: 3.

A26. Пластилиновый шар массой 0,1 кг летит горизонтально со скоростью 1 м/с (см. рис.). Он налетает на неподвижную тележку массой 0,1 кг, прикрепленную к легкой пружине, и прилипает к тележке. Чему равна максимальная кинети­ческая энергия системы при её дальнейших колебаниях? Трением пренебречь. Удар считать мгновенным.

1) 0,1 Дж
2) 0,5 Дж
3) 0,05 Дж
4) 0,025 Дж

Решение. По закону сохранения импульса скорость тележки с прилипшим пластилиновым шаром равна

Правильный ответ: 4.

А27. Экспериментаторы закачивают воздух в стеклянный сосуд, одновременно охлаждая его. При этом температура воздуха в сосуде понизилась в 2 раза, а его давление возросло в 3 раза. Во сколько раз увеличилась масса воздуха в сосуде?

1) в 2 раза
2) в 3 раза
3) в 6 раз
4) в 1,5 раза

Решение. Используя уравнение Менделеева - Клапейрона, можно рассчитать массу воздуха в сосуде:

.

Если температура понизилась в 2 раза, а его давление возросло в 3 раза, то масса воздуха увеличилась в 6 раз.

Правильный ответ: 3.

A28. К источнику тока с внутренним сопро­тивлением 0,5 Ом подключили реостат. На рисунке показан график зависимости силы тока в реостате от его сопротивления. Чему равна ЭДС источника тока?

1) 12 В
2) 6 В
3) 4 В
4) 2 В

Решение. По закону Ома для полной цепи:

.

При внешнем сопротивлении равном нуля ЭДС источника тока находится по формуле:

Правильный ответ: 2.

А29. Последовательно соединены конденсатор, катушка индуктивности и резистор. Если при неизменной частоте и амплитуде напряжения на концах цепи увеличивать ёмкость конденсатора от 0 до , то амплитуда тока в цепи будет

Решение. Сопротивление схемы переменному току равно . Амплитуда тока в цепи равна

.

Эта зависимость как функция С на промежутке имеет максимум при . Амплитуда тока в цепи будет сначала возрастать, затем убывать.

Правильный ответ: 3.

А30. Сколько α- и β-распадов должно произойти при радиоактивном распаде ядра урана и конечном превращении его в ядро свинца ?

1) 10 α- и 10 β-распадов
2) 10 α- и 8 β-распадов
3) 8 α- и 10 β-распадов
4) 10 α- и 9 β-распадов

Решение. При α-распаде масса ядра уменьшается на 4 а. е. м., а при β-распаде масса не изменяется. В серии распадов масса ядра уменьшилась на 238 – 198 = 40 а. е. м. Для такого уменьшения массы требуется 10 α-распадов. При α-распаде заряд ядра уменьшается на 2, а при β-распаде - увеличивается на 1. В серии распадов заряд ядра уменьшился на 10. Для такого уменьшения заряда кроме 10 α-распадов требуется 10 β-распадов.

Правильный ответ: 1.

Часть B

В1. Небольшой камень, брошенный с ровной горизонтальной поверхности земли под углом к горизонту, упал обратно на землю через 2 с в 20 м от места броска. Чему равна минимальная скорость камня за время полёта?

Решение. За 2 с камень преодолел 20 м по горизонтали, следовательно, составляющая его скорости, направленная вдоль горизонта, равна 10 м/с. Скорость камня минимальна в наивысшей точке полёта. В верхней точке полная скорость совпадает со своей горизонтальной проекцией и, следовательно, равна 10 м/с.

В2. Для определения удельной теплоты плавления льда в сосуд с водой стали бросать кусочки тающего льда при непрерывном помешивании. Первоначально в сосуде находилось 300 г воды при температуре 20 °C. К моменту времени, когда лёд перестал таять, масса воды увеличилась на 84 г. Определите по данным опыта удельную теплоту плавления льда. Ответ выразите в кДж/кг. Теплоёмкостью сосуда пренебречь.

Решение. Вода отдала теплоты. Это количество теплоты пошло на таяние 84 г льда. Удельная теплота плавления льда равна .

Ответ: 300.

В3. При лечении электростатическим душем к электродам прикладывается разность потенциалов . Какой заряд проходит между электродами за время процедуры, если известно, что электрическое поле совершает при этом работу, равную 1800 Дж? Ответ выразите в мКл.

Решение. Работа электрического поля по перемещению заряда равна . Откуда можно выразить заряд:

.

В4. Дифракционная решетка с периодом расположена параллельно экрану на расстоянии 1,8 м от него. Какого порядка максимум в спектре будет наблюдаться на экране на расстоянии 21 см от центра дифракционной картины при освещении решетки нормально падающим параллельным пучком света с длиной волны 580 нм? Считать .

Решение. Угол отклонения связан с постоянной решётки и длиной волны света равенством . Отклонение на экране составляет . Таким образом, порядок максимума в спектре равен

Часть C

С1. Масса Марса составляет 0,1 от массы Земли, диаметр Марса вдвое меньше, чем диаметр Земли. Каково отношение периодов обращения искусственных спутников Марса и Земли , движущихся по круговым орбитам на небольшой высоте?

Решение. Период обращения искусственного спутника, движущегося вокруг планеты по круговой орбите на небольшой высоте, равен

где D - диаметр планеты, v - скорость движения спутника, которая связана с центростремительным ускорением соотношением.