Хорошо ли твердые жиры растворяются в воде. Не растворимые в воде жиры.Энергетическая функция.Являются основным структурным компонентом биологических мембран

В пяти пробирках поместите по 1-2 капли растительного масла (или другого жира). Прилейте в первую пробирку 1 мл этилового спирта, во вторую – этилового эфира, в третью – бензина, в четвертую – бензола, в пятую – воды. Взболтайте содержимое пробирок и дайте постоять.

Во всех ли веществах растворяется жир? Какие вещества являются хорошими растворителями жиров, а какие плохими? Какой вывод можно сделать о растворимости жиров на основании опыта.

Пример вывода.

1.Подсолнечное масло + вода = образование неустойчивой эмульсии с последующим быстрым разделением смеси на два слоя.
2.подсолн масло + этиловый спирт = образование мутного раствора в результате недостаточного растворения масла.

3.подсолн масло + бензол = раствор почти прозрачный.

4.подсолнечное масло + бензин= раствор прозрачный.в бензине масло растворимо полностью

В этиловом эфире растворимо полностью

Растительное масло, будучи неполярным, растворяется в неполярных растворителях, т. е. в бензине, этиловом эфире

Вода и спирт - растворители полярные в них жир плохо или практически не растворим.

Опыт № 2. Эмульгирование жиров. (Формируйте ответ самостоятельно при наличии подсказки)

В пять пробирок налейте по 3 - 4 капли растительного масла. Добавьте в первую пробирку 5 мл воды, во вторую – 5%-ного раствора NaOH, в третью - раствора соды, в четвертую – раствора мыла, в пятую – раствора белка. Сильно встряхните содержимое каждой пробирки и наблюдайте образование эмульсии. Поставьте в штатив пробирки с полученными эмульсиями на несколько минут.

В какой пробирке произошло расслоение? Какие вещества дают устойчивые эмульсии?

Эмульсией называют дисперсионную систему, состоящую из двух или более жидких фаз, одна из которых (имеющая название дисперсионная среда) является непрерывной.
Если взять примерно одинаковое количество масла и воды и механическим путем, например, при перемешивании, приготовить эмульсию, то после этого произойдет быстрое расслоение.

Образование стойких эмульсий происходит при добавление ПАВ.

Опыт № 3. Омыление жиров в водно-спиртовом растворе щелочи. (Демонстрация видео) Краткое описание опыта.

В пробирку поместите 2 г жира и прилейте 6 мл 15%-ного спиртового раствора щелочи. Перемешайте смесь стеклянной палочкой, закрепите пробирку в штативе и закройте пробкой с обратным холодильником. Пробирку со смесью поставьте на водяную баню и нагревайте в течение 12-15 минут до кипения. Омыление вести до тех пор, пока жидкость не станет однородной. Для определения конца омыления налейте в пробирку несколько капель полученной смеси, добавьте 6 мл воды и нагрейте раствор. Если взятая смесь растворяется в воде без выделения капель жира, то омыление можно считать законченным. Если капли жира в растворе, то смесь продолжайте нагревать на водяной бане еще несколько минут.



К полученной густой жидкости добавьте насыщенный раствор NaOН. Жидкость мутнеет и выделяется слой мыла, всплывающий на поверхность. Дайте смеси отстояться и охладите пробирку холодной водой, полученное мыло извлеките и оставьте для следующих опытов.

Вопросы для самопроверки: (ответы в тетрадь на выделенные вопросы)

1. Какие вещества относятся к жирам?

2. Какова роль жиров в организме?

3. Какой процесс называется прогорканием?

4. Сравните растительные масла и животные жиры по составу, свойствам и

применению.

5. Опишите способы получения животных жиров и растительных масел.

6. Что такое ПАВ?

На какие типы делятся ПАВ по характеру гидрофильных и гидрофобных групп?

К какому типу ПАВ относится обычное мыло?

9. Что такое жидкое мыло(моющие средства) , твердое мыло?(косметические и хозяйственные мыла)

10. Напишите уравнения реакций синтеза жиров из: а) пальмитиновой кислоты и

глицерина; б) линолевой кислоты и глицерина. Назовите полученные жиры.

11. Составьте уравнения реакций получения: а) олеолинолеопальмитина; б) триглицерида масляной кислоты; в) диолостеарина.

12. Охарактеризуйте все изменения, происходящие с жирами в процессе технологической обработки пищи.


«Гидролиз углеводов, денатурация белков».

А) Углеводы (Текст для прочтения и повторения)

Углеводы (сахара) распространены в природе и играют важную роль жизни человека. Они составляют до 80 % массы сухого вещества растений и около 2 % сухого вещества животных организмов.



Название углеводы возникло в связи с тем, что сначала были известны вещества, состав которых можно было выразить формулой Сn(H 2 O)m.

Моносахариды являются многоатомными альдегидо- или кетоспиртами.

Полисахариды делятся на сахароподобные (олигосахариды) и несахароподобные. Низкомолекулярные (са­хароподобные) полисахариды содержат в молекуле небольшое число (2-10) остатков моноз. Они хорошо растворяются в воде, имеют сладкий вкус и ярко выраженное кристаллическое строение. Одни из них (мальтоза, лак­тоза) восстанавливают ионы меди (П) (фелингову жид­кость), они называются восстанавливающими, другие (са­хароза, трегалоза) нe восстанавливают, и поэтому их от­носят к невосстанавливающим олигосахаридам.

Высокомолекулярные (несахароподобные) полисахариды содержат от десятков до нескольких десятков тысяч остатков моносахаридов; они нерастворимы в воде, без­вкусны и не имеют ярко выраженного кристаллического строения.

Наибольшее значение из моносахаридов имеют глю­коза и фруктоза.

Глюкоза (С 6 Н 12 О 6) - бесцветное кристаллическое ве­щество, растворимое в воде.

Изучение строения и свойств показало, что глюкоза может существовать в различных формах: альдегидной и двух циклических формах.

Глюкоза содержится во многих плодах и ягодах (ви­ноград) и образуется в организме при расщеплении диса­харидов и крахмала пищи. Она быстро и легко из кишеч­ника всасывается в кровь и используется организмом как источник энергии для образования гликогена в печени, для питания тканей мозга, мышц и поддержания необхо­димого уровня сахара в крови.

Под действием ферментов глюкоза подвергается бро­жению.

§ 5. ТРИАЦИЛГЛИЦЕРИНЫ И ЖИРНЫЕ КИСЛОТЫ

Триацилглицерины – самые распространенные липиды в природе. Их принято делить на жиры и масла. Жиры при комнатной температуре находятся в твердом состоянии. При нагревании они плавятся и переходят в жидкое состояние. Масла же при комнатной температуре имеют жидкую консистенцию. Жиры и масла не растворяются в воде. При интенсивном перемешивании с водой они образуют эмульсии.

В современных развитых странах на долю жиров в рационе питания людей приходится до 45 % суммарного потребления энергии. Столь большая доля жиров при ограниченном движении нежелательна. Причиной многих все шире распространяющихся болезней, в первую очередь болезней сердечно-сосудистой системы, является избыточное содержание жиров в пище. В то же время во многих развивающихся странах, наоборот, жиров в пище недостаточно, в суммарном потреблении энергии на их долю приходится не более 10 %.

Триацилглицерины играют важную роль в организме животного или растения. Так, например, на долю триацилглицеринов в человеческом организме приходится около 10 % массы тела (рис 4).

Рис. 4. Химический состав человеческого тела.

Жиры являются наиболее эффективным средством запасания энергии, так как обладают особыми преимуществами перед другими соединениями. Они не растворяются в воде, поэтому не меняют существенно физико-химические свойства цитоплазмы; кроме того, они химически инертны. И самое главное, их энергоемкость значительно выше энергоемкости других веществ, например, углеводов и белков. Ограниченное количество энергии может запасаться и в виде углеводов (гликоген), но основная избыточная энергия, поступающая в организм, запасается главным образом в виде жиров. Практически все пищевые продукты содержат жиры, хотя их содержание колеблется в широких пределах (табл. 1).

Таблица 1

Среднее содержание жиров в некоторых пищевых продукта .

Пищевой продукт

Масса жира в

100 гпищевого продукта, г

Пищевой продукт

Масса жира в

100 гпищевого продукта, г

Сливочное масло

25 – 45

10,9

17,7

82,0

Подсолнечное масло

Картофель

Жареный арахис

Белый хлеб

99,9

49,0

1,7


Триацилглицерины

Триацилглицерины (жиры и жирные масла природного происхождения) представляют собой сложные эфиры, образованные глицерином и жирными кислотами. Жирные кислоты – это общее название одноосновных алифитических карбоновых кислот RCOOH. При гидролизе триацилглицеринов образуются глицерин и жирные кислоты:


В состав триацилглицерина могут входить остатки как одной и той же кислоты – такие жиры называются простыми, – так и разных (смешанные жиры). Жирные кислоты в зависимости от строения радикала можно подразделить на насыщенные , ненасыщенные , а также разветвленные и циклические .

Насыщенные жирные кислоты имеют общую формулу CH 3 (CH 2) n COOH, в которой n может изменяться от 2 до 20 и несколько выше. В качестве примера короткоцепочечной кислоты можно привести масляную кислоту CH 3 (CH 2) 2 COOH, которая содержится в молочном жире и сливочном масле. Примерами длинноцепочечных кислот являются пальмитиновая CH 3 (CH 2) 14 COOH и стеариновая CH 3 (CH 2) 16 COOH. Они входят в состав триацилглицеринов почти всех жиров и масел животного и растительного происхождения.

Ненасыщенные жирные кислоты содержат одну или несколько двойных связей в алифитической цепи, которая тоже может быть короткой либо длинной. Одной из наиболее распространенных кислот в живой природе является олеиновая кислота. Она содержится в оливковом масле, от которого и произошло ее название, а также в свином жире CH 3 (CH 2) 7 CH=CH(CH 2) 7 COOH. Двойная связь в олеиновой кислоте имеет цис -конфигурацию. В природе встречаются жирные кислоты и с большим числом двойных связей, например, линолевая (две двойные связи), линоленовая (три двойные связи), арахидоновая (четыре двойные связи).

Триацилглицерины, в состав которых входят жирные кислоты с короткими цепями либо с высокой степенью ненасыщенности, как правило, имеют более низкие температуры плавления. Поэтому при комнатной температуре они находятся в виде масел. Это свойственно триацилглицеринам растительного происхождения, которые содержат большую долю ненасыщенных кислот. В отличие от этого животные жиры характеризуются высоким содержанием насыщенных жирных кислот и являются, как правило, твердыми. В этом можно убедиться, сравнивая состав оливкового масла (растительное масло) и сливочного масла (животный жир) (табл.2).

Таблица 2.

Распределение жирных кислот в оливковом и сливочном маслах

Тип жирной кислоты

Число атомов углерода

в оливковом масле

в сливочном масле

Насыщенные

Итого 12 61

Ненасыщенные

Итого 84 33

Интересно знать! В клетках теплокровных животных содержание ненасыщенных жирных кислот ниже, чем в клетках хладнокровных животных.

Маргарин представляет собой заменитель сливочного масла. Получают его гидрированием растительных масел над никелевым катализатором. Двойные связи, находящиеся в остатках ненасыщенных кислот, присоединяют водород. В результате ненасыщенные жирные кислоты превращаются в насыщенные. Меняя степень гидрирования, можно получать твердые и мягкие маргарины. Дополнительно в маргарин добавляют жирорастворимые витамины, а также специальные вещества, придающие маргарину цвет, запах, устойчивость.

Разветвленные и циклические жирные кислоты встречаются в природе редко. Примером циклических жирных кислот является хаульмугровая кислота, а разветвленных – туберкулостеариновая кислота:


Мыла

Мыла представляют собой натриевые или калиевые соли длинноцепочечных жирных кислот. Они образуются при кипячении животного сала или растительного масла с гидроксидом натрия или калия.


Этот процесс получил название омыления. Калиевое мыло является более мягким, часто жидким, по сравнению с натриевым.

Очищающее действие мыла обусловлено тем, что анионы мыла обладают сродством, как к жирным загрязнителям, так и воде. Анионная карбоксильная группа обладает сродством к воде, с молекулами которой она образует водородные связи, т.е. она гидрофильна. Углеводородная цепь за счет гидрофобных взаимодействий обладает сродством к жирным загрязнителям. Гидрофобный хвост молекулы мыла растворяется в капле грязи, оставляя на поверхности гидрофильную головку. Поверхность капли грязи начинает активно взаимодействовать с водой и в конечном итоге отрывается от волокна и переходит в водную фазу (рис 5).


Рис.5. Моющее действие мыла: 1 – углеводородные цепи анионов мыла растворяются в жирной грязи, 2 – микрокапелька грязи (мицелла), взвешенная в воде

Взаимодействуя с ионами кальция, которые содержатся в жесткой воде, мыла образуют нерастворимые в воде кальциевые соли:

В результате мыло выпадает в виде хлопьев и расходуется бесполезно.

В последние десятилетия широкое распространение получили синтетические моющие средства. В их молекулах часто вместо карбоксильной группы находится сульфогруппа R-SO 3 Na. Кальциевые соли сульфокислот растворимы в воде.

Интересно знать! Природные жирные кислоты имеют, как правило, неразветвленную цепь с четным числом атомов углерода. Синтетические моющие средства содержат разветвленные цепи, которые с большим трудом расщепляются бактериями. Это приводит к значительным загрязнениям природных водоемов, куда в конечном итоге попадают бытовые стоки. Другой проблемой стиральных порошков являлось до недавнего времени большое содержание в них (до 30 %) неорганических фосфатов. Фосфаты являются хорошей питательной средой для определенных водорослей. Поэтому попадание большого количества фосфатов в водоемы вызывает бурный рост этих водорослей, интенсивно поглощающих кислород, растворенный в воде. При недостатке кислорода происходит массовая гибель водных растений и животных с последующим их разложением. В итоге водоем заболачивается.

Прогоркание жиров

Жиры при хранении под действием света и кислорода приобретают неприятный запах и вкус. Этот процесс называется прогорканием. В результате его происходит окисление жиров. Легче всего окисляются непредельные жирные кислоты:

Образующиеся продукты обладают неприятным запахом и вкусом. Для предотвращения прогоркания жиры следует хранить в темноте без доступа кислорода и при низкой температуре.

Распад и синтез жиров в организме

Переваривание жиров начинается в желудке и продолжается в кишечнике. Для этого процесса необходимы желчные кислоты, при их участии происходит эмульгирование жиров. Эмульгированные жиры расщепляются липазами . Гидролиз жиров протекает в несколько стадий:


Гидролиз триацилглицеринов в первой и второй стадиях протекает быстро, а гидролиз моноацилглицеринов идет медленнее. В результате гидролиза образуется смесь, содержащая жирные кислоты, моно-, ди-, триацилглицерины, которые и всасываются эпителиальными клетками кишечника. В этих клетках происходит ресинтез липидов, которые затем поступают в другие ткани, где они откладываются в запас или подвергаются окислению. В результате окисления жиров образуется вода и оксид углерода (IV), а освободившаяся энергия накапливается в виде АТФ. При окислении1 гжира выделяется 39 кДж энергии.

В четыре пробирке поместите по 1-2 капли растительного масла (или другого жира). Прилейте в первую пробирку 1 мл этилового эфира, во вторую 1 мл этилового спирта в третью 1 мл бензина, в четвертую 1 мл воды. Взболтайте содержимое пробирок и дайте постоять. В каждой ли пробирке растворился жир? Какие вещества являются хорошими растворителями жиров, а какие- плохими? Почему? Какой вывод о растворимости жиров можно сделать на основании опыта?

Вывод:

Опыт №6 Присоединение брома к олеиновой кислоте

В пробирку вносят 3-4 капли бромной воды, 1 капли олеиновой кислоты и энергично взбалтывают. Бромная вода обесцвечивается.

(СН 3)-(СН 2) 7 -СН=СН-(СН 2) 7 – СООН + Вr 2 → (СН 3)-(СН 2) 7 -СНВr -СНВr -(СН 2) 7 – СООН

(дибромстеариновая кислота)

Опыт №7 Окисление олеиновой кислоты перманганатом калия

В пробирку помещают по 2 капли олеиновой кислоты, раствора карбоната натрия и раствора перманганата калия. При встряхивании смеси розовая окраска исчезает. на что указывает обесцвечивание бромной воды и раствора перманганата калия?

вывод:

(СН 3)-(СН 2) 7 -СН=СН-(СН 2) 7 –СООН +[О]+НОН→(СН 3)-(СН 2) 7 -СН – СН -(СН 2) 7 – СООН

диоксистеариновая кислота

Опыт №8 Растворение мыла в воде.

В пробирку помещают кусочек мыла (примерно 10 мг), добавляют 5 капель воды и тщательно взбалтывают содержимое пробирки в течение 1-2минут. После этого содержимое пробирки нагревают в пламени горелки. Натриевые и другие щелочные мыла (калиевое, аммониевое) хорошо растворяются в воде.

Контрольные вопросы по теме «Карбоновые кислоты»:

1Осуществите следующие превращения: С 2 Н 6 →С 2 Н 5 Сl→С 2 Н 5 ОН→СН 3 СОН→СН 3 СООН

2.Сколько граммов магния и уксусной кислоты потребуются для получения 6л водорода.

3. Напишите уравнения реакций получения янтарной кислоты из монохлоруксусной кислоты?

4.Напишите уравнения реакций и назовите образующиеся соединения:

а) молочная кислота + этиловый спирт

б) молочная кислота + гидроксид натрия

в) молочная кислота + уксусная кислота

5.Напишите структурную формулу пальмитодистеарина

Лабораторная работа № 9 Аминокислоты. Белки.

В состав белков входят углерод, водород, кислород, азот, сера, фосфор и другие элементы. Молекулярная масса белка может достигать сотен тысяч углеродных единиц. Белки представляют собой нестойкие соедине­ния, они хорошо гидролизуются под влиянием кислот, щелочей или ферментов. Конечными продуктами распада белка являются аминокислоты различного состава.

Аминокислоты можно рассматривать как производ­ные карбоновых кислот, у которых атом водорода в ра­дикале замещен на аминогруппу:

Аминокислоты имеют одновременно два вида функ­циональных групп: карбоксильную, являющуюся носите­лем кислотных свойств, и аминогруппу - носителя ос­новных свойств. Аминокислоты проявляют амфотерные свойства, т. е. свойства и кислот, и оснований, поэтому белки также проявляют амфотерные свойства, так как они построены из остатков аминокислот.

Белки растворяются в различных растворителях. Многие белки растворяются в воде, некоторые в растворах нейтральных солей, в щелочах или кислотах.

При определенных условиях белки способны выпа­дать в осадок, причем осаждение может быть обратимое и необратимое. Способность белков осаждаться при раз­личных условиях используется для обнаружения и раз­деления их. Для обнаружения белков используют также цветные реакции на белки. К ним относятся ксантопротеиновая, биуретовая и другие реакции.

Реактивы . Раствор белка; раствор аминоуксусной кислоты; серная кислота (конц.); азотная кислота (конц.); соляная кислота (конц.); гидроксид натрия, 20%-ный раствор; ацетат свинца, 10 и 20%-ный рас­творы; сульфат меди (насыщенный и 1%-ный растворы)CuSО 4 ; аммиак (конц.)NН 3 ; хлорид натрияNаСl, 10%-ный раствор; сульфат аммония, насыщенный раствор (NН 4) 2 SО 4 ; фенолфталеин; лакмусовая бумага, метиловый оранжевый; лакмус красный. аминоуксусная кислота, 0, 2н. раствор; оксид меди (II) СuО, порошок; едкий натр, 2 н. раствор NаОН.

Оборудование. Сухая пробирка; стеклянная палочка, пробирка с газоотводной трубкой.

Опыт №1. Образование медной соли аминоуксусной кислоты

Реактивы и материалы:

В пробирку помещают немного порошка оксида меди СuО, 4 капли раствора аминоуксусной кислоты и нагре­вают в пламени горелки, встряхивая содержимое пробир­ки. Пробирку ставят на некоторое время в штатив, чтобы осел избыток черного порошка оксида меди. К отстоявшемуся синему раствору приливают 1 каплю раствора едкого натра. Раствор остается прозрачным.

Для аминокислот характерно образование медных солей, окрашенных в синий цвет.

α-Аминокислоты дают с медью окрашенные внутренние комплексные соли, очень устойчивые:

Опыт №2. Действие аминокислот на индикаторы

В три пробирки прилейте по 0,5 мл раствора амино­уксусной кислоты и добавьте в первую фенолфталеина, во вторую метилового оранжевого, в третью лакмуса. Окраска индикаторов не изменяется Почему водные растворы моноаминокислот нейтральны по отношению к инди­каторам?

Вывод:

Опыт №3. Свертывание белков при нагревании

В пробирку помещают небольшое количество раствора белка и нагревают до кипения в пламени горелки. Наблюдайте выпадение белка в виде хлопьев или мути. Чем этообъясняется? Разбавьте раствор водой. Растворяется ли осадок; если нет, то почему? Слегка охладите раствор белка для использования в следующем опыте.

Вывод:

Опыт № 4. Высаливание белков сульфатом аммония

В пробирку налейте по 1 -1,5 мл раствора белка и сульфата аммония и встряхните смеси нагрейте до кипения в пламени горелки. Жидкость мутне­ет, а количество свернувшегося белка резко увеличивается. добавление нейтральных солей облегчает и ускоряет свёртывание белков при нагревании. свёртывание белков – процесс необратимого осаждения, так как белковые молекулы при этом меняют свою структуру.

Опыт №5. Осаждение белков солями тяжелых металлов

В две пробирки налейте по 1-2 мл раствора белка и медленно, по каплям, при встряхивании приливайте в одну из них насыщенный раствор сульфата меди, а в другую 20%-ный раствор ацетата свинца. Образуется хлопьевидный осадок или муть. Соли тяжёлых металлов осаждают белки из растворов, образуя нерастворимые в воде солеобразующие соединения, с солями меди – голубой осадок, с солями свинца – белый.

Опыт №6. Осаждение белков минеральными кислотами

В три пробирки налейте по 1 мл раствора белка. Осторожно добавьте в пробирку с раствором белка кон­центрированной азотной кислоты так, чтобы кислота не смешивалась с белком. В месте соприкосновения двух жидкостей образуется кольцо белого хлопьевидного осадка. По­вторите этот опыт с концентрированными серной и соля­ной кислотами. Белки образуют с концентрированными кислотами солеобразные соединения и одновременно вызывают свёртывания белка. в большинстве случаев выпавший осадок растворим в избытке концентрированных кислот (кроме азотной).

Опыт №7. Цветные реакции на белки

1 Ксантопротеиновая реакция. Ксантопротеиновая реакция указывает на наличие в белке аминокислот со­держащих бензольные ядра, например тирозина. При взаимодействии таких аминокислот с азотной кислотой образуются нитросоединения, окрашенные в желтый цвет

К 1 мл раствора белка добавьте 5-6 капель кон­центрированной азотной кислоты до появления белого осадка или мути от свернувшегося белка. Реакционную смесь нагрейте до окрашивания осадка в желтый цвет. В процессе гидролиза идет растворение осадка. Охла­дите смесь и добавьте к ней осторожно, по каплям, избы­ток концентрированного раствора гидроксида натрия NаОН. Окраска пе­реходит в оранжевую, что говорит об образовании более интенсивно окрашенных анионов.

2 Биуретовая реакция. С помощью биуретовой реак­ции обнаруживают наличие пептидных группировок (-СО-NН-) в молекулах белка. Белки с солями меди дают красно-фиолетовое окрашивание вследствие образования слож­ных соединений.

В пробирку налейте по 1-2 мл раствора белка, 20%- ного едкого натра. Затем прилейте 3-4 капли разбавленного, почти бесцветного раствора медно­го купороса (CuSО*5Н 2 О) и содержимое тщательно перемешайте. Жидкость окрашивается в фиолетовый цвет.

Контрольные вопросы по теме «Аминокислоты»

1.Кратко охарактеризуйте каждую структуру белковой молекулы.

2..Составьте схему, отражающую превращение белков пищи в организме человека.

3 .Кратко опишите применение белков.

4.Чем определяется специфическая биологическая актив­ность белковой молекулы? В каких случаях она может быть ут­рачена?

5.Какие виды гидролиза белков вам известны?

ЛАБОРАТОРНАЯ РАБОТА №10. СВОЙСТВА МОНОСАХАРИДОВ

По отношению к гидролизу углеводы делятся на два основных класса: простые углеводы, или моносахариды(глюкоза, фруктоза, галактоза), и сложные сахара, или полисахариды. Сложные углеводы, в свою очередь, подразделяются на две основные группы: сахароподобные(сахароза, лактоза, мальтоза) и несахароподобные углеводы (крахмал, клетчатка). Из моносахаридов наибольшее значение имеют глюкоза и фруктоза, химические свойства которых определяются особенностью их строения. Сахароподобные сложные углеводы имеют сладкий вкус, растворяются в воде, при гидролизе распадаются на моносахариды. Несахароподобные сложные углеводы не обладают сладким вкусом, при гидролизе также распадаются на моносахариды.

Реактивы . Глюкоза, 20%-ный и 2%-ный растворы; реактив Селиванова; сахароза кристаллическая и 10%-ный све­жеприготовленный раствор; лактоза, 10%-ный раствор; жидкость Фелинга (I); серная кислота, 10%-ный раствор; раствор аммиака, 2,5%-ный NН 3 *Н 2 О; гидроксид натрияNаОН, 1%-ный раствор; нитрат серебра, 1%-ный раствор АgNО 3 ;

Оборудование. Стакан вместимостью 100 мл; водяная баня; во­ронка; фильтровальная бумага; .

Опыт №1. Окисление глюкозы аммиачным раствором оксида серебра (реакция серебряного зеркала)

Налейте в пробирку 1-2 мл раствора аммиака и добавьте 1 мл нитрата серебра АgNО 3 ; сна­чала выпадает бурый осадок оксида серебра, который за­тем растворяется в избытке раствора аммиака([Аg(NН 3) 2 ]ОН). К приго­товленному аммиачному раствору оксида серебра прилей­те 2 мл 20%-ного раствора глюкозы и несколько капель 2%-ного едкого натра и осторожно нагрейте полученную смесь до начала почернения раствора. Далее реакция идёт без нагревания и металлическое серебро выделяется на стенках пробирки в виде зеркального налёта.

глюкоза глюконовая кислота

Опыт №2. Окисление глюкозы реактивом Фелинга

В пробирку вводят 3 капли раствора глюкозы и каплю реактива Фелинга. Держа пробирку наклонно, осторожно нагревают верхнюю часть раствора. при этом нагретая часть раствора окрашивается в оранжево-жёлтый цвет вследствие образования гидроксида меди (I), которая в дальнейшем переходит в красный осадок оксида меди (I) Сu 2 О.

окисление реактивом Фелинга служит качественной реакцией на глюкозу.

Задание: напишите уравнение данной реакции и сделайте вывод

Опыт №3 Осмоление глюкозы щёлочью

В пробирку помещают 4 капли раствора глюкозы и добавляют 2 капли раствора едкого натра. нагревают смесь до кипения и осторожно кипятят 2-3мин. Раствор при этом желтеет, а затем становится тёмно-коричневым. При нагревании со щелочами моносахариды осмоляются и буреют. процесс осмоления ведёт к образованию сложной смеси веществ.

Опыт №4Реакция Селиванова на кетозы

В пробирку помещают кристаллик резорцина, 2 капли соляной кислоты и 2 капли раствора фруктозы. Содержимое пробирки нагревают до начала кипения. жидкость постепенно окрашивается в красный цвет.

При нагревании с концентрированными минеральными кислотами, молекулы гексоз постепенно расщепляются, образуя смесь различных продуктов (также одним из продуктов является оксиметилфурфурол), который с резорцином образует окрашенное соединение. эта реакция позволяет быстро обнаружить в смеси сахаров наличие кетогексоз.

Контрольные вопросы по теме «Свойства моносахаридов и дисахаридов»

    Какие соединения называются моносахаридами?

    На основании каких опытов можно сделать вывод о строе­нии глюкозы?

    При спиртовом брожении глюкозы выделилось 112 л СО 2 . Сколько получилось этилового спирта и сколько глюкозы на это потребовалось?

4.Пользуясь текстом параграфа учебника, подготовьте письменные ответы на следующие вопросы: а) Каковы физические свойства глюкозы? б) Где глюкоза встречается в природе? в) Какова молекулярная формула глюкозы

5. Какие моносахариды называются пентозами, а какие гексозами?

6. Какие формы сахаров называются фуранозными, а какие пиранозными

7. Какие признаки положены в основу определения правых и левых изомеров сахаров по их химическому строкению?

ЛАБОРАТОРНАЯ РАБОТА №11 СВОЙСТВА ПОЛИСАХАРИДОВ

Реактивы. Крахмал, порошок и раствор; раствор сахарозы; картофель; хлеб ржаной; картофель; раствор иода; серная кислота, 20%-ный раствор Н 2 SО 4 И (конц.); карбонат натрия Nа 2 СО 3 ; карбонат кальция СаСО 3 ;; аммиак, 1%-ный раствор NН 3 * Н 2 О; жидкость Фелинга (I);

Оборудование. Стакан вместимостью 100мл; воронка; водяная баня; фарфоровые чашки - 2 шт.; ступка с пестиком; стеклянная палочка, фильтровальная бумага; вата.

Опыт № 1. Взаимодействие крахмала с йодом. Качественная реакция на крахмал.

В пробирку помещают 2 капли крахмального клейсте­ра и 1 каплю раствора йода. Содержимое пробирки окра­шивается в синий цвет. Полученную темно-синюю жид­кость нагревают до кипения. Окраска при этом исчезает, но при охлаждении появляется вновь.

Крахмал представляет собой смесь двух полисахари­дов- амилозы (20%) и амилопектина (80%). Амилоза растворима в теплой воде и дает с йодом синее окраши­вание. И амилоза, и амилопектин состоят из остатков глюкозы, связанных α-гликозидными связями, но они отличаются формой молекул. Амилоза представляет собой линейный полисахарид, построенный из нескольких

тысяч остатков глюкозы, обладающий структурой винта или спирали. Внутри спирали остается свободный канал диаметром около 5 мкм, в который могут внедряться посторонние молекулы, образуя особого типа комплексы -так называемые соединения включения. Одним из них является соединение амилозы с иодом, имеющее синее окрашивание. Строение амилозы схематически выражается следующей формулой:

Амилопектин в теплой воде нерастворим, набухает в ней, образуя крахмальный клейстер. В состав амилопек­тина в отличие от амилозы входят разветвленные цепи глюкозных остатков. Амилопектин с иодом дает красно­вато-фиолетовое окрашивание.

Получение крахмального клейстера.

12г крахмала разводим в 40 мл холодной воды до получения крахмального молочка. Доводим до кипения 160 мл воды, вливая в неё при помешивании крахмальное молочко. доводим полученный крахмальный клейстер до кипения и охлаждаем до комнатной температуры

Опыт № 2. Обн аружение крахмала в хлебе и картофеле.

На кусочек белого хлеба и на срез сырого картофеля поместите по одной капле йода. Как изменится окраска? Сделайте вывод.

Опыт №3. Доказательство наличия гидроксильных групп в сахарозе

В пробирку помещают 1 каплю раствора сахарозы, 5 капель раствора щелочи и 4-5 капель воды. Добавля­ют каплю раствора сульфата меди (II). Смесь приобре­тает слабую синеватую окраску вследствие образования сахарата меди.

Раствор сохраняют для следующего опыта.

Опыт №4 Отсутствие восстанавливающей способности у сахарозы

Раствор сахарата меди осторожно нагревают до кипе­ния над пламенем горелки, держа пробирку так, чтобы нагревалась только верхняя часть раствора. Сахароза в этих условиях не окисляется, что указывает на отсутствие в ее молекуле свободной альдегидной группы

Опыт №5 Кислотный гидролиз сахарозы

В пробирку помещают 1 каплю раствора сахарозы, 1I каплю 2 н. соляной кислоты, 3 капли воды и осторожно нагревают над пламенем горелки 20-30 мин. Половину раствора отливают в другую пробирку и добавляют к ней 4-5 капель раствора щелочи (до щелочной реакции на лакмус) и 3-4 капли воды. Затем добавляют 1 каплю раствора сульфата меди и нагревают верхнюю часть си­него раствора до кипения. Появляется оранжево-желтое окрашивание, доказывающее образование глюкозы. К оставшейся части гидролизованного раствора сахарозы (первая пробирка) прибавляют кристаллик резорцина, 2 капли концентрированной соляной кислоты и нагревают до кипения. появляется красноватое окрашивание, указывающее на образование фруктозы. молекула сахарозы легко расщепляется при гидролизе на молекулу глюкозы и молекулу фруктозы. Оба моносахарида входят в состав сахарозы в циклических формах. В создании связи между ними участвуют оба гликозидных гидроксила.

В сахарозе остаток фруктозы находится в виде непрочного пятичленного кольца – фуранозы; такие сложные сахара очень легко гидролизуются.

Вывод:

Опыт №6. Кислотный гидролиз крахмала

В 7 пробирок помещают по 3 капли очень разбавлен­ной, почти бесцветной йодной воды. В фарфоровую чашку наливают 10 мл крахмального клейстера, добавляют 5 мл раствора серной кислоты и перемешивают содержимое стеклянной палочкой. Ставят чашку с раствором на асбестированную сетку и нагрева­ют на маленьком пламени. Через каждые 30с отбирают пипеткой с капиллярным отверстием 1 каплю раствора и переносят в очередную пробирку с йодной водой. После­довательные пробы обнаруживают постепенное измене­ние окраски при реакции с иодом. Проба Окраска

Первая. . Синяя

Вторая. Сине-фиолетовая

Третья Красно-фиолетовая

Четвертая...... Красновато-оранжевая

Пятая........ Оранжевая

Шестая Оранжево-желтая

Седьмая Светло-желтая (цвет йод­ной воды)

Раствор охлаждают, нейтрализуют раствором щелочи по красной лакмусовой бумажке до сильнощелочной ре­акции, добавляют каплю реактива Фелинга и нагревают. Появление оранжевого окрашивания доказывает, что конечным продуктом гидролиза является глюкоза.

6 Н 10 О 5 ) х + xН 2 0 = xС 6 Н 12 0 6

крахмал глюкоза

При нагревании с разбавленными минеральными кис­лотами, а также под влиянием энзимов крахмал подвер­гается гидролизу. Гидролиз крахмала происходит сту­пенчато с образованием все более простых углеводов.

Схема постепенного гидролиза крахмала такова:

6 Н 10 О 5 ) х → (С 6 Н 10 О 5 )у → 6 Н 10 О 5 ) z С 12 Н 22 0 11 С 6 Н 12 О б

крахмал растворимый декстрины мальтоза глюкоза

Первый продукт гидролиза - растворимый крах­мал - не образует клейстера, с йодом дает синее окра­шивание. При дальнейшем гидролизе образуются декст­рины - более простые полисахариды, дающие с йодом окраску от сине-фиолетовой до оранжевой. Мальтоза, а затем глюкоза не изменяют обычную окраску йода.

Опыт №7 . Клетчатка, или целлюлоза

Клетчатка - основа отдельных органов всех расте­ний, их скелет. Она построена так же, как и крахмал - из большого количества остатков глюкозы. Отдельные звенья глюкозы связаны в целлюлозе между собой через бета-глюкозидные гидроксилы.

Различие во взаимном сцеплении молекул глюкозы в крахмале и клетчатке приводит к резкому различию в некоторых их свойствах. Клетчатка растворяется в ам­миачном растворе гидрата окиси меди (реактиве Швей­цера). При этом ее молекулы частично расщепляются на более мелкие осколки. Если нейтрализовать такой рас­твор кислотой, то клетчатка снова появится в виде хлопьевидной массы, но уже с несколько измененной длиной и структурой молекул.

После кратковременной обработки крепкой серной кислотой клетчатка растворяется, образуя клейкую мас­су - амилоид. Амилоид окрашивается йодом в синий цвет. Фильтровальная бумага после обработки серной кислотой становится более прочной и полупрозрачной. Это объясняется тем, что амилоид склеивает отдельные волокна целлюлозы (растительный пергамент)

Б. Получение растительного пергамент а. Полоску фильтровальной бумаги погрузите до по­ловины в чашку с 80%-процентной серной кислотой на 30-40 сек. Затем опустите бумагу в сосуд с водой и окончательно промойте ее в растворе аммиака Сравни­те необработанную и обработанную кислотой части полоски бумаги (прозрачность, прочность). Будьте осто­рожны при выполнении этого опыта; не разбрызги­вайте серную кислоту при переносе бумажки в воду!

Запишите результаты опыта.

Контрольные вопросы по теме «Свойства полисахаридов»

1.Какие соединения называются полисахаридами

2.Какие соединения называются дисахаридами?

3..Пользуясь текстом параграфа учебника подготовьте письменные ответы на следующие вопросы:

а) Каковы физические свой­ства целлюлозы?

б) Где целлюлоза встречается в природе? в) Какова формула элементарного звена макромолекулы цел­люлозы?

г) в чём основное отличие крахмала, гликогена и клетчатки?

4. Составьте схему, отражающую применение крахмала.

5.Перечислите химические свойства целлюлозы.

6. Что называется инвертным сахаром?

Лабораторная работа №12 Гетероциклические соединения

Реактивы и материалы: фурфурол свежеприготовленный; азотно­кислое серебро, 0,2 н. раствор; аммиак, 2 н. раствор; фуксинсернистая кислота; анилин; флороглюцин; соляная кислота (^=1,19 г/см 3); уксусная кислота ледяная. слизевая кислота; аммиак, концентриро­ванный раствор; глицерин; соляная кислота (ρ=1,19 г/см 3). индиго (тонко растертый порошок); сер­ная кислота (ρ=1,84г/см 3); хлорид олова (II), 1 н. раствор в соля­нокислой среде; едкий натр, 1 н. раствор.

Оборудование: сосновая лучинка, стеклянная палочка. белая ткань; фильтровальная бумага; водяная ба­ня; ступка с пестиком.

Опыт №1. Реакции фурфурола

Оборудование: часовое стекло; стеклянная палочка; фильтро­вальная бумага.

В пробирку помещают 2 капли фурфурола, 8 капель воды и взбалтывают до полного растворения фурфурола.

    Реакция с фуксинсернистой кислотой. На часовое стекло помещают 4 капли фуксинсернистой кислоты, кап­лю раствора фурфурола и смешивают стеклянной палоч­кой. Через некоторое время появляется чуть заметное розовое окрашивание.

    Реакция с аммиакатом серебра. На часовое стекло помещают каплю нитрата серебра и каплю раствора ам­миака. Выпадает осадок гидроксида серебра. Добавляют еще одну каплю аммиака и получают прозрачный раствор комплексной соли серебра [Аg(]NНз) 2 ]ОН.

К раствору аммиаката серебра добавляют каплю раствора фурфурола. На стекле появляется свободное серебро в виде черного пятна или серебристого налета.

3. Реакция с анилином. На часовом стекле смешива­ют каплю анилина с каплей уксусной кислоты. Полоску фильтровальной бумаги смачивают полученным раство­ром и наносят на нее каплю фурфурола. Появляется ро­зово-красное пятно.

4. Реакция с флороглюцином. В пробирку помещают 3 капли раствора фурфурола, 1 каплю соляной кислоты и 2 кристалла флороглюцина. При нагревании смесь окра­шивается в темно-зеленый цвет. Фурфурол обладает свойствами ароматических альдегидов. Он легко дает ре­акцию «серебряного зеркала», окрашивает фуксинсернистую кислоту, образует фенилгидразон.

Цветные реакции фурфурола с анилином и флороглю­цином основаны на реакции конденсации. Фурфурол в присутствии соляной или уксусной кислоты дает окра­шенные продукты конденсации с анилином, бензидином, резорцином, ксилидином.

Опыт №2. Получение пиррола. Качественная реакция на пиррол

(Опыт проводят в вытяжном шкафу!)

В пробирку помещают несколько кристаллов слизевой кислоты, 2 каплираствора аммиака и тщательно переме­шивают стеклянной палочкой содержимое пробирки. До­бавляют 2 капли глицерина и снова перемешивают смесь. Пробирку осторожно нагревают в пламени горелки. Сос­новую лучинку смачивают 1 каплей соляной кислоты и вносят в верхнюю часть пробирки, продолжая ее нагре­вать. Пары пиррола окрашивают сосновую лучину в красный цвет.

При добавлении аммиака получается аммонийная соль слизевой кислоты, которая затем разлагается. В чис­ло продуктов распада входит пиррол. Глицерин влияет на течение реакции, делая его более равномерным. Пир­рол легко осмоляется кислотами, окрашиваясь при этом в красный цвет.

Опыт №3. Свойства индиго

1. Растворимость индиго в воде. В пробирку помеща­ют на кончике микролопатки порошок индиго и приливают 5-6 капель воды. Содержимое пробирки тщательно

встряхивают при комнатной температуре, а затем нагре­вают в пламени горелки. Одну каплю полученной смеси наносят на полоску фильтровальной бумаги - образует­ся бесцветное пятно, в центре которого оседает синий по­рошок индиго. Индиго в воде, как и в большинстве обыч­ных растворителей, не растворяется.

2 «Кубовое» крашение. В пробирку помещают 5 ка­пель раствора хлорида олова (II) и добавляют по каплям раствор едкого натра, пока не растворится образовав­шийся осадок. В маленькой ступке тщательно растирают несколько кристалликов индиго с 5-6 каплями воды. Пипеткой переносят 2 капли полученной суспензии в пробирку с раствором станнита натрия и нагревают пробирку в кипящей водяной бане, пока реакционная смесь не станет прозрачной.

В полученный щелочной раствор белого индиго поме­щают маленькую полоску белой ткани, заранее прости­ранной и отжатой. Ткань тщательно пропитывают раст­вором восстановленного индиго, затем выжимают и ос­тавляют на воздухе. Ткань вначале принимает зеленую окраску, а затем синюю.

Синее индиго - «кубовый» краситель, в щелочной среде синее индиго восстанавливается в белое индиго, обладающее фенольным характером и растворимое в ще­лочах. Щелочной раствор белого индиго называют «ку­бом». В такой раствор опускают ткань, пропитывают ее раствором и затем оставляют на воздухе для «вызрева­ния». На волокнах ткани белое индиго кислородом возду­ха окисляется в нерастворимое синее индиго.

синее индиго белое индиго

Опыт №4. Окисление индиго сильным окислителем

При окислении индиго сильным окислителем полу­чается изатин, имеющий в растворах желтую окраску (твердый изатин - красного цвета):

Налейте в пробирку около 1 мл раствора индигокармина и 5-10 капель концентрированной азотной кислоты Что наблюдается? Как изменился цвет раствора?

Запишите результат опыта

индиго Изатин

Контрольные вопросы по теме «Гетероциклические соединения»

1.Какие соединения называются гетероциклическими

2.напишите формулы и названия важнейших пятичленных гетероциклов

2.напишите формулы и названия важнейших шестичленных гетероциклов

Липиды.

Органические вещества.

Жиры и липоиды выполняют и строительную функцию6 они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.

Жиры и липоиды.

По структуре различаются двухцепочечные РНК. Двухцепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одноцепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одноцепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, "узнают" (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами.

Одна из основных функций жиров – энергетическая. Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жир служит запасным источником энергии.

Составляют 20 - 30 % состава клетки.Они могут быть простыми (аминокислоты, глюкоза, жирные кислоты) и сложными (белки, полисахариды, и.к, липиды).

НУКЛЕИНОВЫЕ КИСЛОТЫ (полинуклеотиды), биополимеры, осуществляющие хранение и передачу генетич. инфор-мации во всех живых организмах, а также участвующие в биосинтезе белков. Первичная структура нуклеиновых кислот представляет собой последовательность остатков нуклеотидов. Последние в молекуле нуклеиновых кислот образуют неразветвленные цепи. В зависимости от природы углеводного остатка в нуклеотиде (D-дезоксирибозы или D-рибозы) нуклеиновые кислоты подразделяют соотв. на дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК) к-ты.

ДНК – самые крупные биополимеры, содержащие до 108–109 мономеров – дезоксирибонуклеотидов, которые содержат сахар – дезоксирибозу. В состав ДНК входит 4 типа дезоксирибонуклеотидов: аденин – А, тимидин – Т, гуанин – G, цитозин – С.

Все главные компоненты питания наш организм научился хранить про запас - так, на всякий случай. Сахар он складирует в печени, белки – в животе, а вот для жиров выбрано место под кожей. Хотите похудеть? Придется идти войной на собственный организм! Чтобы победить, надо воевать умело. Эта статья вас многому научит!

Жиры… Что это такое? Откуда они берутся? Почему откладываются под кожей? И вообще, зачем они нужны? А может, их и не стоит есть? Звучит резонно, ведь от жиров у нас столько проблем с фигурой !

Первая стадия превращения жира: прием пищи

С этим все понятно: мы сели за стол и загрузили в себя пищу. Так вот, «обработка» жиров организмом начинается уже у вас во рту, когда слюнные железы выделяют слюну, насыщенную особыми пищеварительными ферментами. Далее, казалось бы, к этой работе должен подключиться желудок. Как ни странно, жиры – не его профиль. Так что он попросту пропускает их через себя и отправляет дальше в кишечник. А уж тут жиры будут перевариваться и всасываться в кровь. Кстати, а зачем нам нужны эти самые жиры? И не лучше ли вообще их не есть?

Дадим слово науке
  • Жиры – это энергетическое «топливо» организма
  • Жиры жизненно важны как строительный компонент кожи, волос, ногтей…
  • Жиры - «сырье» для производства гормонов.
Вторая стадия превращения жира: расщепление

Жиры не похожи на углеводы и белки тем, что в воде не растворяются. Получается, воду надо чем-то заменить, так? Специально ради жиров наш организм выделяет желчь. Полное растворение жиров и ей «не по зубам». Зато она умеет «дробить» жиры на микроскопические капли – триглицериды. А уж с ними-то кишечник умеет справляться.

Слово науке

Триглицерид - это три молекулы жирных кислот, «приклеенные» к молекуле глицерина. В кишечнике часть триглицеридов соединяется с белками и вместе с ними начинает путешествие по организму.


Третья стадия превращения жира: путешествие

Да, триглицериды самостоятельно путешествовать не умеют. Им обязательно нужно транспортное средство, которое называется «липопротеин». Липопротеины бывают разные, и задача у каждого своя.

  • Хиломикроны – образуются в кишечнике из жиров и белков-носителей. Их задача – переносить полученный с пищей жир из кишечника в ткани и клетки.
  • Липопротеины с очень высокой плотностью – тоже транспортируют жир к разным тканям и клеткам, но берут его исключительно в печени.
  • Липопротеины с низкой плотностью – тоже доставляют жиры от печени к тканям организма. В чем же разница? А в том, что попутно эти липопротеины «прихватывают» холестерин из кишечника и разносят его по организму. Так что если где-то в сосудах у вас образовались холестериновые тромбы, угрожая сердечно-сосудистым заболеванием, то вот вам виновник – липопротеины с низкой плотностью.
  • Липопротеины с высокой плотностью – имеют одну функцию – прямо противоположную. Эти липопротеины наоборот собирают холестерин по всему организму и свозят его в печень для уничтожения. Очень полезные соединения.
Слово науке

Эти подробности помогают понять, что потребление жирной пищи вовсе не означает автоматического повышения уровня холестерина в организме. Рискованная ситуация возникает, если в организме слишком много липопротеинов с низкой плотностью (которые помогают накапливать холестерин) и не хватает липопротеинов с высокой плотностью (тех, которые отвечают за выведение холестерина). А это уже фактор чисто генетический. Есть еще фактор арифметический. Это когда вы так много едите этого самого холестерина, что на его выведение никаких липопротеинов не хватит. А вот еще одна находка науки. Установлено, что холестерина особенно много в животных жирах. А вот растительные жиры в этом смысле не в пример полезнее. Казалось бы, надо поменьше есть животных жиров, а растительных побольше. Как бы не так! Полезный эффект растительных жиров скажется только в одном случае: если вы полностью замените ими животные.

Четвертая стадия превращения жира: не отложить ли нам немного жира?

Если организм получил больше, чем нужно, то в дело вступает фермент под названием липаза. Его задача – упрятать все лишнее внутрь жировых клеток.

Слово науке

Липаза – своего рода ключик, который открывает двери жировых клеток навстречу жирам. Жировые клетки могут впустить внутрь себя очень много жиров и раздуться наподобие воздушного шарика. Это как раз и отвечает, что вы толстеете. Если увеличится одна жировая клетка или даже сотня, то этого никто не заметит. Однако если вы едите слишком много жиров, разом набухнут мириады жировых клеток, залегающие под кожей. А этого уже от глаз не скроешь. Больше того, липаза может дать команду на размножение жировых клеток. И тоже под завязку набьет их жиром. Хуже всего, что жировые клетки нельзя уничтожить. Когда вы беретесь худеть, липаза «открывает» жировые клетки и выпускает жир наружу, ну а потом он «перегорает» во время физических упражнений . Вы смотритесь в зеркало: ни капли жира! Между тем, все жировые клетки на месте, да только похожи на проколотые воздушные шарики. Стоит вам забросить спорт, как липаза снова начинает набивать их жирами.

Почему жира много?

Организм про запас сохраняет не только жиры, но и углеводы. Допустим, вы съели углеводов на 100 калорий. Так вот, организм должен потратить примерно 23 калории, чтобы сохранить оставшиеся 77 калорий. А вот чтобы сохранить 100 лишних «жирных» калорий, понадобится всего 3 калории. Остальные 97 калорий – все ваши! Вот и получается, что запасы жира всегда самые большие.


Факторы, способствующие отложению жира в организме:

  • Возраст (чем вы старше, тем «охотнее» откладывается жир)
  • Пол (у женщин жир накапливается быстрее)
  • Переедание (вы едите слишком много)
  • Сидячий образ жизни (энергия жиров вам не нужна)
  • Избыток липазы (фактор наследственности)
  • Нервные стрессы (вопреки всеобщему мнению, от стрессов полнеют)
  • Привычка есть жирное (речь об особенностях национальной кухни)
  • Генетические факторы (полнота передается по наследству).
Стадия пятая: расходуем запасы

Каким образом занятия спортом помогают избавиться от лишних килограммов? А вот так. Сначала организм на физические упражнения реагирует расходом гликогена – заранее запасного сахара. И только потом, когда он потратит «сахарные» запасы, в дело идут жировые отложения. Происходит это примерно через полчаса после начала аэробной тренировки, т.е. именно тогда, когда многие ее обычно сворачивают.

Меняем фигуру

Столько вокруг разговоров насчет генетики! Мол, если ваша мамочка была полной, то и вам не миновать той же судьбы. На самом же деле, все не так страшно. Гены предопределяют композицию вашего тела на 25%. Только на четверть! Это касается количества жировых клеток и того, в каких местах они кучкуются (в области талии или же на бедрах и ягодицах). Так что, если вы и вправду похожи на мамочку, то, скорее, потому, что у вас с ней общие привычки в питании: вы переедаете точно как она. Если вы начнете заниматься спортом и сядете на диету, то будете выглядеть совсем иначе. Кстати, силовых упражнений не надо шарахаться. Мышцы – это государство в государстве. Точно как головной мозг, они бодрствуют даже когда вы спите, и расходуют энергию. Чем больше у вас мышц, тем выше ваш суточный расход калорий. Вы боитесь превратиться в мужеподобную культуристку? Визуально заметна прибавка мышц в 12-25 кг. Однако к такому культуристки идут десятилетиями. Дай Бог вам прибавить хотя бы 5-8 кг!

Женщинам – «яблокам» согнать лишний жир легче, чем «грушам». Жир в области талии в 5 раз более податлив, чем на бедрах и ягодицах. Но и для женщин с «грушевой» фигурой есть свои методы. Во-первых, надо понимать, что «сжигание» жира – это часть вашего общего обмена веществ. Такого не бывает, чтобы обмен был вялым, а жир «сгорал» быстро. Так что, вот вам первая хитрость. Ешьте часто – через 2-2,5 часа, но малыми порциями. Этот прием реально «раскручивает» скорость обмена, а значит, и «жиросжигания». Второе. Больше аэробики! Все эти аэробные занятия по 40-45 минут не про вас. Не менее 4-5 дней в неделю занимайтесь аэробикой по полтора – два часа! И еще. Жир «сжигает» кислород. Вам нужна аэробика на свежем воздухе. Только на свежем воздухе! Третье. Не вздумайте садиться на «жесткие» диеты менее 1200 калорий! Доказано, что такие диеты наоборот замедляют темп обмена веществ , что автоматически снижает темп «жиросжигания»!

Откуда организм берет энергию

Энергия, которая вам нужна для того, чтобы поднять штангу или пробежать кросс, может поступать из двух источников. Это гликоген (углеводы) и жир. Так как же заставить себя терять побольше жира? Вот причины, которые влияют на «выбор» организма:

  • Пища, которую вы ели перед тренировкой (если съедите что-то сильно углеводное, вроде овощного салата, каши, фруктов или шоколадки, то в качестве главного источника энергии организм изберет не жир, а заранее запасенный сахар – гликоген.)
  • Продолжительность тренировки (чем дольше вы тренируетесь, тем больше будет израсходовано жира)
  • Интенсивность занятий (чем выше нагрузка, тем больше расходуется гликоген)
  • Тип упражнений (аэробика сжигает больше жира , а тренажеры – гликогена)
  • Уровень физической подготовки (чем больше ваш «спортивный стаж», тем больше вы сжигаете жира)
  • Углеводы , принятые во время тренировки (вздумаете выпить или съесть что-то сладкое, больше потратите гликогена).
02.02.2020 21:05:00