Гель-хроматография как метод определения молекулярной массы. Гельпроникающая хроматография Гель проникающая хроматография полимеров

Гель-проникающая хроматография является, вероятно, наиболее часто используемым методом , так как это самый простой метод разделения полисахаридов, имеющих большой диапазон молекулярных масс. Одновременно он позволяет определять молекулярные массы полисахаридов. Когда применимы мягкие условия определения, этот метод особенно полезен для нестабильных биологических материалов.
Прибор для хроматографического. Гель-проникающая хроматография (ГПХ) - это метод, в котором разделение полимерных молекул основано на различных объемах внутри пористых частиц геля, которые доступны молекулам растворенного вещества разного размера.
Гель-проникающая хроматография является разновидностью метода фракционирования на колонке, в которой разделение на фракции осуществляется по методу молекулярного сита, основанному на способности молекул проникать в поры адсорбента определенного размера. В качестве адсорбентов в данном методе используют материалы, не имеющие зарядов и ионогенных групп, обладающие точно заданным размером пор (см. гл. Наилучшим образом этим требованиям удовлетворяют специально приготовленные сополимеры стирола с дивинилбензолом, которые при набухании образуют гели.
Схема работы в режиме рецикла. Гель-проникающая хроматография используется в основном как метод определения молекулярновесового распределения полимерных веществ, в то время как гель-фильтрационная хроматография является главным образом методом препаративного разделения, но и в том и в другом случае пригодны обе методики. При определении молекулярновесового распределения необходимо установить связь между хроматограммой и молекулярным размером или, правильнее, молекулярным весом.
Гель-проникающая хроматография, с Эксклюзионная хроматограф.
Гель-проникающая хроматография - эксклюзионная хроматом рафия, в которой неподвижной фазой служит гель.
Гель-проникающая хроматография представляет собой разновидность метода фракционирования на колонке, в которой разделение осуществляется по принципу молекулярного сита. Этот принцип был известен уже в начале 50 - х годов, но лишь после того, как Порат и флодин вновь открыли и широко использовали этот метод, он получил признание и широкое применение в научных исследованиях. Начиная с этого момента и до 1964 г. было опубликовано более 300 работ, посвященных этому новому методу фракционирования.
Разделение аминокислот методом ионообменной хроматографии. Гель-проникающая хроматография позволяет также охарактеризовать и фенолформальдегидные смолы.
Схема работы в режиме рецикла (10 ]. Гель-проникающая хроматография используется в основном как метод определения молекулярновесового распределения полимерных веществ, в то время как гель-фильтрационная хроматография является главным образом методом препаративного разделения, но и в том и в другом случае пригодны обе методики. При определении молекулярновесового распределения необходимо установить связь между хроматограммой и молекулярным размером или, правильнее, молекулярным весом.
Гель-проникающая хроматография (ГПХ) представляет собой метод разделения молекул, основанный на различии их размеров. Этот метод известен под названием гель-хроматография, эксклюзионная и мо-лекулярно-ситовая хроматография. Последнее название наиболее полно отражает сущность метода, однако в литературе более широко используют термин гель-проникающая хроматография.

Гель-проникающая хроматография (ГПХ) - это метод, в котором разделение полимерных 5 молекул основано на различных объемах внутри пористых чзстиц геля, которые доступны молекулам растворенного веществз рззного рззмера.
Гель-проникающая хроматография (ГПХ) представляет собой метод, в котором для разделения полидисперсных полимеров в растворе используют сильно пористые неионные гранулы геля. Согласно развитым теориям и моделям фракционирования методом ГПХ, определяющим фактором разделения является не молекулярный вес, а гидродинамический объем молекулы.
Гель-проникающая хроматография основана на способности макромолекул различной длины, а следовательно, и различной молекулярной массы, проникать в пористый компонент на различную глубину. Колонку набивают пористым стеклом или сильно сшитым набухшим полимерным гелем, в верхнюю часть колонки вносят полимер, затем промывают колонку растворителем. Молекулы меньшего размера проникают в поры гораздо глубже и удерживаются в колонке в процессе элюции значительно дольше, чем макромолекулы большего размера.
Гель-проникающая хроматография позволяет не только фракционировать смеси олигомеров, но и определять их средние молекулярные массы и молекулярно-массовые распределения. При этом численные значения констант уравнения Марка - Куна мало отличаются от коэффициентов для гауссова клубка в тэта-растворителе.
Гель-проникающую хроматографию компонентов нуклеиновых кислот проводят на сшитых декстрановых гелях (сефадек-сах) (Sephadex, Pharmacia, Uppsala, Sweden) и полиакриламид-ных гелях (биогелях) (Bio-Gel, Bio-Rad Labs Richmond, Calif. Кроме того, гели обладают ионообменными и адсорбционными свойствами, проявляя повышенное сродство к ароматическим и гетероциклическим соединениям.
При гель-проникающей хроматографии также наблюдается адсорбция пуриновых оснований на матрице геля.
РТФ олигобутадиенов и сополимеров бутадиена с акриловой кислотой и акрилонитрилом по данным 3. Использование гель-проникающей хроматографии (ГПХ) в классическом варианте для оценки РТФ олигомеров пока ограничено. В основе разделения молекул близких молекулярных весов, но разной функциональности методом ГПХ лежит изменение среднеквадратичного расстояния между концами макромолекул г / 2 в растворе в зависимости от природы и молекулярного веса концевых групп. Особенно сильно на значение г §) / сказывается циклизация и разветвление молекул, которые приводят к его уменьшению-в 1 5 - 2 раза по сравнению с линейными молекулами того же молекулярного веса.
Механизм гель-проникающей хроматографии но существу одинаков в случае высокой и низкой плотности поперечных связей, хотя на практике и могут наблюдаться значительные различия. Частицы геля в колонке суспендированы в растворителе. Каналы между частицами геля имеют гораздо большие размеры по сравнению с размерами пор внутри гранул геля, поэтому растворитель протекает только в пространстве между гранулами геля. Молекулы растворенного вещества в зависимости от их размера проникают в поры геля на различную глубину и перемещаются практически без ограничений в растворителе, содержащемся в гранулах геля.
Механизм гель-проникающей хроматографии в том виде, в каком он здесь представлен, основывается на предположении о диффузионном равновесии. Иными словами, принимается, что время распределения молекул растворенного вещества между наружным по отношению к частицам геля пространством и доступным для этих молекул объемом пор достаточно мало. Интервал времени, за который зона, содержащая молекулы растворенного вещества, проходит частицы геля, обычно значительно больше полупериода достижения равновесия путем диффузии растворенных молекул внутрь гранул геля.
При гель-проникающей хроматографии вещество характеризуется величиной К а, как и в обычной хроматографии. Величина К не зависит от размеров колонки и поэтому может быть использована для сравнения данных ГПХ, полученных на разных колонках.
При гель-проникающей хроматографии раствор полимера вводят в жидкость (элюент), который движется через колонку, заполненную сорбентом. На выходе из колонки раствор разделяется на фракции (зоны) в соответствии с размером макромолекул. Время, прошедшее от момента ввода раствора в элюент до момента выхода из колонки данной зоны, называют временем удерживания, а объем элюента, прошедшего через колонку за это время, - удерживаемым объемом.
Вытеснительная хроматография полиуретана. Определение молекулярной массы. Методом гель-проникающей хроматографии определяли молекулярно-массовое распределение в пробах полиуретана, растворенных в тетрагидрофуране.

Принцип гель-проникающей хроматографии может быть использован при разделении веществ, которые значительно различаются размерами своих молекул. Размер пор используемого сорбента должен быть соизмерим с размерами молекул разделяемых веществ. От распределения пор зависит разделительная способность материала. Вещества, молекулы которых настоль -, ко велики, что не могут проникнуть в поры, проходят через колонну с той же скоростью, что и подвижная фаза. Чем меньше молекулы разделяемых веществ, тем в больший объем пор они могут проникнуть и тем больше будут отставать от фронта подвижной фазы. Гель-проникающую хроматографию применяют главным образом для анализа веществ макромолекулярного характера.
В гель-проникающей хроматографии 0 - характеризует молекулы и вещества, которые не могут проникнуть в поры геля в колонке; в адсорбционной хроматографии - вещества, которые хотя и проникают практически в весь объем пор, но не задерживаются вследствие взаимодействия с поверхностью сорбента. Коэффициент емкости характеризует процессы взай модействия разделяемого вещества с подвижной и стационарной фазами и является, следовательно, термодинамической величиной.
В гель-проникающей хроматографии в качестве наполнителя колонок применяют макропористые силикагели, пористые стекла и органические полимерные гели. Материалы одного и того же типа, различающиеся по своей пористости, предназначены для разделения веществ с молекулами разного размера.
В гель-проникающей хроматографии подвижная фаза в большинстве случаев представляет собой единственный растворитель. Выбор растворителя необходимо проводить с учетом растворимости в нем полимера и в то же время так, чтобы в используемой подвижной фазе взаимодействия разделяемых веществ со стационарной фазой были минимальными. Для разделения гидрофильных полимеров, растворимых в воде, чаще всего используют тетрагидрофуран.
Схематическое изображение набухшего геля. При гель-проникающей хроматографии сорбционная активность компонентов и связанный с ней межфазный массообмен определяются только диффузионной подвижностью макромолекул и соотношением их размеров с размерами пор.
Для гель-проникающей хроматографии используют гель-хроматографы, состоящие из набора хроматографических колонок, заполненных соответствующим сорбентом (макропористыми стеклами, стирогелями и пр.
В гель-проникающей хроматографии помимо закономерностей общехроматографического характера, имеются свои специфические особенности, связанные прежде всего с особенностями свойств растворов полимеров, являющихся объектом исследования, с разнообразием этих объектов, сорбентов и условий проведения анализа. Все это, естественно, усложняет построение общей теоретической схемы. Поэтому исследователи, работающие в области ГПХ, вынуждены были на первых этапах развития метода разрабатывать частные теоретические концепции, в рамках которых находили объяснение отдельные закономерности, наблюдавшиеся в эксперименте. Это позволяло более грамотно ставить эксперимент, оптимизировать его режим и интерпретировать результаты.
Проведена гель-проникающая хроматография этих полимеров и получены градуировочные кривые для определения их молекулярной массы.
Обработка данных гель-проникающей хроматографии требует определения трех характеристик системы: надежности полученных данных, калибровки системы и ее разрешающей способности. Эти три характеристики взаимосвязаны и должны в конечном счете устанавливаться прямыми измерениями. После того как это сделано, можно далее пользоваться косвенными данными о неизменности указанных характеристик системы.
В методе гель-проникающей хроматографии полимерный образец разделяется в соответствии с размерами его макромолекул. До тех пор пока речь идет о молекулах, различающихся только по молекулярным весам, эффективность разделения определяется исключительно молекулярным весом. Но даже столь простая ситуация может усложниться, если молекулы химически неоднородного полимерного образца будут содержать сольватирую-щиеся в разной степени группы. Тогда, несмотря на одинаковость молекулярных весов, некоторые цепи могут обладать большими величинами мольных объемов.
С помощью гель-проникающей хроматографии анализируют широкий круг материалов, и быстрому распространению метода способствуют такие его преимущества, как простота и высокая эффективность. Эффективность метода наиболее ярко проявляется при анализе природных веществ, молекулярная масса которых изменяется в широких пределах.
Зависимость высоты, эквивалентной теоретической тарелке, от диаметра зерен сорбента для сорбентов разного типа при различных способах упаковки. О - поверхностно-пористый сорбент. dK - 2 1 мм, ручная упаковка.. - поверхностно-пористый сорбент, dK 7 9 мм, машинная упаковка. ф-поверхностно-пористый сорбент, dK 7 9 мм, ручная упаковка. с - силикагель, уравновешенная суспензия. ф - микросферический силикагель. стабилизированная суспензия. П - кизельгур, тампонная упаковка. А - микросферический силикагель, стабилизированная суспензия.| ГПХ узкодисперсных полистирольных стандартов на колонке (250 X 0 20 мм с силикаге-лем (Фп 0 20 мм, dp 5 - 6 мкм. 1 - Mw 2 - 10. 2 - Mw 5 МО4. 3 - Д ш 4. Поскольку в гель-проникающей хроматографии k n мало, Ф этого хроматографического метода меньше, чем при адсорбционной хроматографии.
Гель-хроматография (или гель-проникающая хроматография) является одним из вариантов жидкостной хроматографии, в котором растворенное вещество распределяется между свободным растворителем, окружающим гранулы геля, и растворителем, находящимся внутри гранул геля. Так как гель представляет собой набухшую структурированную систему, имеющую различные по размерам поры, то разделение в данном виде хроматографии зависит от соотношения размеров молекул разделяемых веществ и размеров пор геля. Помимо размеров молекул, которые можно принять пропорциональными молекулярным массам, существенную роль для гель-хроматографии играет форма молекул. Особенно большое значение этот фактор имеет для растворов полимеров, в которых при одной и той же молекулярной массе молекулы могут принимать различную форму (сферическую или другую произвольную) в соответствии с их кон-формацией и вследствие этого по-разному вести себя в колонке. Дальнейшие рассуждения справедливы для молекул, имеющих сферическую форму.

ГПХ (для гель-проникающей хроматографии) , которые служат исключительно для аналитических целей и имеют общую длину 370 см. (Принцип действия этого хроматографа, в котором распределение по молекулярному весу синтетических полимеров определяется почти совершенно автоматически, описан на стр. Конечно, прибор подобного типа можно создать и для работы с водорастворимыми полимерами , что существенно облегчит задачу определения молекулярного веса.
Однако широкому распространению гель-проникающей хроматографии препятствует малый ассортимент пористых гелей и невозможность разделения асфальте-нов с учетом их химической природы. Согласно этому методу на ионообменных смолах (амберлит-27 и амберлит-15) было проведено разделение асфальтенов на четыре кислых (38 6 % от исходного), четыре основных (16 6 %) и нейтральную (41 3 %) фракции. Затем методом гель-проникающей хроматографии они делятся на фракции, имеющие одинаковые размеры молекул. Этим методом была выявлена значительная полярность асфальтенов, выделенных из ромашкинской нефти.
Модель трехточечного взаимодействия, предложенная Далглишем. В принципе в гель-проникающей хроматографии (ее еще называют эксклюзионной или ситовой), которая особенно важна в химии белков, разделение осуществляется главным образом вследствие различия в стерических размерах молекул: большие молекулы, поскольку они не способны диффундировать в мелкие поры матрицы, элюируются быстрее, чем малые молекулы.
Рассмотренный выше механизм гель-проникающей хроматографии, по-видимому, полностью подтверждается экспериментом. В большинстве случаев изменение скорости потока не влияет на элюирующий объем, что свидетельствует о весьма близком подходе системы к равновесным условиям. Следует также отметить, что нарисованная выше картина - весьма грубое приближение к действительности. На рис. 5 - 1 указаны молекулы растворенного вещества, которые, обладая весьма малыми размерами, могут диффундировать через все поры матрицы и даже в местах сужения пор. В то же время среди молекул растворенного вещества имеются такие молекулы, большие размеры которых позволяют им проникать лишь в поры определенных размеров, находящиеся только на внешней оболочке гранул геля. Однако должны существовать молекулы с промежуточными размерами, которые могут проходить через узкие места в порах, хотя с гораздо меньшей скоростью вследствие взаимодействия со стенками каналов. Крейг убедительно показал, что скорости прохождения молекул растворенных веществ в процессе диффузии через мембраны, по обе стороны которых концентрации этих молекул различны, не слишком различаются, если поры мембран значительно больше, чем размеры диффундирующих молекул. Однако скорости диффузии оказываются чувствительной мерой молекулярных размеров для тех молекул, размеры которых лишь немногим меньше диаметра пор. Очевидно, по своей природе процессы дифференциальной диффузии и гель-проникающей хроматографии близки друг к другу.
При фракционировании методом гель-проникающей хроматографии применяют или пытаются применить большое количество разнообразных гелей. Как правило, эти гели представляют собой полимеры с различной степенью сшивания и набухают обычно в тех растворителях, в которых они получены. В качестве примеров можно привести декстраны, используемые в водных растворах, и полистиролы, применяемые при работе в органических растворителях. В отличие от общепринятого взгляда набухание, как было показано, не играет существенной роли, но весьма важным показателем качества геля является проницаемость или степень пористости. Воган провел широкое изучение различных гелей и других пористых материалов и показал, что набухший силикагель (сантоцель А фирмы Monsanto) позволяет весьма эффективно осуществлять фракционирование полистирола в бензоле. Силикагель представляет собой гидрофильное вещество и поэтому, разумеется, не набухает в бензоле.
Не останавливаясь на теории гель-проникающей хроматографии , заметим, что проницаемость частиц зависит от пористости и от метода получения студня. К наиболее широко применяемым в настоящее время студням относятся: для водных растворов - сшитый эпихлоргидрином декстран (биологически синтезированный углевод) и сшитый полиакриламид, а для неводных растворов - сшитый дивинилбензолом полистирол.
В работе методом гель-проникающей хроматографии были исследованы акрилонитрильные и АБС-сополимеры и получены градуировочные кривые для разных растворителей. Ниже будут описаны методы, применявшиеся в работе для анализа АБС-сополимеров. В этой работе были разработаны методики определения нерастворимого полимера (геля), растворимого полимера и общего количества неполимерных добавок, а также методики определения связанного акрилонитрила, бутадиена и стирола как в исходном полимере, так и в выделенном нерастворимом полимере (геле) и в растворимой полимерной фракции. Все эти методики применимы и для анализа промежуточных образцов привитого АБС-сополимера, а также смесей этого сополимера с низкомолекулярным стирол-акрило-нитрильным полимером, которые используются в производстве АБС.
В работе методом гель-проникающей хроматографии изучали поликарбонаты, синтезированные различными способами. Авторы работы пришли к заключению, что этот метод является наилучшим для анализа концевых групп. Методом гель-проникающей хроматографии проведено также фракционирование поликарбоната. Поликарбонаты были фракционированы из метиленхлорида методом последовательного осаждения. Такая градуировка была далее подтверждена методом мембранной осмометрии и измерением светорассеяния. Экспериментальные величины вязкости показали, что соотношение Кураты - Стокмайера - Роя пригодно для интерпретации молекулярного растяжения поликарбоната в метиленхлориде.
При общем описании процесса гель-проникающей хроматографии следует исходить из модифицированных соответствующим образом теоретических концепций хроматографии и динамики сорбции с учетом специфики растворов полимеров. Хроматографическую систему удобно рассматривать как двухфазную, понимая под подвижной фазой совокупность каналов, образованных пустотами между частицами сорбента, а под неподвижной - норовое пространство сорбента.
При определении ММР методом гель-проникающей хроматографии р-р полимера пропускают через колонку с насадкой в виде набухшего в р-рителе сшитого полимера. Скорость движения макромолекул в колонке зависит от их мол.
Эксклюзионная хроматография подразделяется на гель-проникающую хроматографию (ГПХ) и гель-фильтрационную хроматографию.
Фракционирование щелочного экстракта из еловой холоцеллюлозы методом ионообменной хроматографии. Для фракционирования часто используют гель-проникающую хроматографию.

Хроматография - метод разделения смесей компонентов, основанный на различии в распределении компонентов между двумя несмешивающимися фазами - подвижной и неподвижной. Компоненты разделяемого образца движутся через систему в подвижной фазе. Гель-проникающий анализ основан на разной способности различных по величине макромолекул проникать в поры неподвижной фазы, в качестве которой чаще используют гели трехмерных полимеров или пористые стекла. При этом разделение происходит только по размерам и не зависит от природы макромолекул.

На рис. 2.23 схематически показана поверхность гранулы геля, покрытая каналами, углублениями различного диаметра и длины, которые называют пореши. Растворитель (подвижная фаза) заполняет все пространство между гранулами и все поры внутри геля.

Объем, недоступный для растворителя, - само вещество геля - называют мертвым объемом, объем пор V n - поровым объемом. Если мимо такой поверхности протекает раствор с молекулами, размеры которых соизмеримы с размерами пор или меньше их, то часть молекул будет проникать в поры. Когда зона растворенного вещества покидает данный участок насадки, концентрация молекул внутри нор становится выше, чем снаружи, и молекулы вновь диффундируют в поток подвижной фазы. Если же размеры молекул больше размеров пор, то они проходят мимо гранул геля, не задерживаясь. Следовательно, большие по размерам молекулы проходят через колонку с гелем быстрее, выходят из нее раньше, при меньшем объеме протекающего растворителя. Для молекул меньших размеров, попадающих в поры и задерживающихся в них некоторое время, необходимо большее количество растворителя, чтобы они были вымыты из колонки.

Таким образом, макромолекулы нолидисперсного полимера, внесенного в колонку с пористым наполнителем, будут выходить из колонки в разное время при разном объеме вымывания V M (объеме удерживания, объеме элюции).

Макромолекулы, полностью исключенные из геля, выходят из колонки при объеме растворителя Е 0 , равном объему пространства, окружающего гранулы геля (объему подвижной фазы, т.е. растворителя, находящегося в колонке). Для меньших молекул доступен объем, равный сумме объема подвижной фазы п части AV„

Рис. 2.23. (а), в норовом пространстве зерна геля (б) и на выходе из колонки (в) неподвижной фазы (объема пор). Тогда элюционный объем /-го компонента растворенного вещества равен

где K,j = AVL/V n - коэффициент объемного распределения пор по размерам; для больших, полностью исключенных из геля макромолекул K V j = 0, для молекул растворителя К Г] = 1.

Для гель-хроматографического анализа характерным является ограниченное изменение элюционного объема, определяемого неравенством Т 0 Чл к Vo + Т„. В случае образца с одинаковым размером молекул следует ожидать их одновременного выхода из колонки. Однако вследствие неидеальности процесса (запаздывания входа и выхода молекул из пор, различия в скоростях движения молекул в порах и между гранулами, у стенок колонки и в ее центре идр.) наблюдается размывание хроматографического пика даже монодисперсных образцов.

Объем подвижной фазы Т 0 экспериментально определяют при использовании веществ с заведомо большими размерами молекул, которые полностью исключаются из геля и вымываются из колонки при объеме растворителя, соответствующем Т 0 . Значение Т 0 можно также рассчитывать по формуле

где Т кол - полный объем колонки; g - общая масса геля и растворителя; р П| и ро - плотности набухшего геля и растворителя.

Величину V n - полный доступный внутренний объем, поро- вый объем - определяют по уравнению

где g rc - масса сухого геля; R - доля связанного в геле растворителя.

Значение R вычисляют по формуле

Поскольку при гель-хромато графическом анализе распределение макромолекул происходит по эффективному гидродинамическому объему, то для получения информации о величинах молекулярных масс и молекулярно-массовом распределении необходимо проводить предварительную калибровку колонки по образцам с известной молекулярной массой, т.е. получать зависимость «М - И эл ». Для анализа полидисперсных полимеров используют

Рис. 2.24. Калибровочные кривые «lgМ - К, л »

(пояснения см. в тексте)

несколько колонок с различным набором пор, соответствующих размерам разделяемых макромолекул.

Когда распределение по размерам пор в геле широкое, зависимость «М - К)Л » будет крутой (прямая 1 на рис. 2.24): колонка в этом случае обеспечивает худшее разделение, но в более широком интервале молекулярных масс. Когда поры близки по размеру, зависимость будет криволинейной в области малых У эл (не происходит разделения высокомолекулярных фракций), однако в этом случае обеспечивается лучшее разделение в более узком интервале молекулярных масс от М { до М 2 (кривая 3 на рис. 2.24). Зависимость 2 на том же рисунке соответствует гелю, поры которого обеспечивают удовлетворительное разделение образца.

Для получения калибровочных зависимостей обычно используют монодиснерсные фракции исследуемого полимера; полученные зависимости в простейших случаях описываются прямой

В более общем случае зависимость «М - У эл » выражается следующим образом:

где С, С 2 и С 3 - константы.

Полимеры различного строения на одной и той же колонке дают обычно различающиеся калибровочные зависимости «М - К,.,».

Аналогичный результат наблюдается и при переходе от одного растворителя к другому для одного и того же полимера. Однако было показано, что для различных полимеров и для различных растворителей можно получить единую зависимость между элю- ционным объемом и произведением М[х.

С использованием уравнения Марка - Куна - Хаувинка [ ц | = = КМ" между коэффициентами уравнений (2.138) и (2.140) можно установить следующие соотношения:

Выполнение универсальной зависимости «Е эл - М[г||» означает, что макромолекулы с одним и тем же значением Л/[ ц | = = Фо(/? 2) 1,5 вымываются при одном и том же значении V Ml . Это свидетельствует о том, что деление в колонке действительно происходит по величине эффективного гидродинамического объема.

Обычно колонку гель-хроматографа калибруют по доступным узким фракциям какого-либо полимера (чаще - полистирола). Если для исследуемого полимера известна зависимость |г|] = К Ц М 0 , то легко пересчитать зависимость «У эл - М[ср]» для данной системы «полимер - растворитель» в зависимость «М - Е эл »:

где ci и М] - соответствующие показатели для первого (стандартного) полимера, а К п. 2 , а 2 и М 2 - для второго.

Чаще определение концентрации полимера в растворе, вытекающем из колонки, производят рефрактометрически, поэтому важно различие показателей преломления раствора и растворителя. Если они окажутся одинаковыми, то полимер будет «невидим» в элюируемом растворе. Получаемые зависимости изменения разницы показателей преломления раствора и растворителя от Е эл представляют собой гель-хроматограмму полимера, которая позволяет рассчитать М„, М„, и молекулярно-массовое распределение.

Пример. На рис. 2.25 приведена гель-хроматограмма полиизопрена при элюировании хлороформом. Для определения молекулярной массы этого образца использована универсальная калибровочная зависимость для полистирола, имеющая вид lg(M[г| |) = 16,13 - 0,0706 К,.,.

Рис. 2.25.

Для перехода к уравнению, связывающему молекулярную массу с элюционным объемом для нолиизонрена, используют уравнение Марка - Куна - Хаувинка для системы «полиизопрсн - хлороформ»:

Тогда калибровочная зависимость для полиизопрена имеет вид

Гель-хроматограмму (см. рис. 2.25) для полиизопрсна разбивают на равные участки - счеты (один счет на рис. 2.25 соответствует АН эл = = 4 мл, а М, - числовое значение молекулярной массы в точке разбивки). Для каждой реперной точки определяют элюционный объем V, высоту F, от базовой линии и представляют полученные данные по форме табл. 2.13.

Данные для расчета молекулярной массы и ММР полиизопрена методом гель-проникающей хроматографии

Таблица 2.13

Fj, мм

Г F:) ,

17 - 10 "’ 1 М: J

Величины М„, и М„ вычисляют по формулам

Таким образом, отношение величин М„, М„, будет

5. Гель-хроматография

Гель-фильтрация (синоним гель-хроматография) - метод разделения смеси веществ с различными молекулярными массами путем фильтрации через различные так называемые ячеистые гели.

Неподвижной фазой в гель-хроматографии является растворитель, находящийся в порах геля, а подвижной – сам растворитель, т.е и подвижную и неподвижную фазы составляет одно и тоже вещество или одна и та же смесь вещества. Гель готовят на основе, например, декстрана, полиакриламида или других природных и синтетических соединений.

В отличии от других хроматографических методов, использующих различия в химических свойствах разделяемых веществ, проявляющихся при их распределении между стационарной и подвижной фазами, разделение основано на ситовом эффекте, характерном для гелей с определенным радиусом пор. Растворитель (подвижная фаза) заполняет как внешний объем между зернами геля, так и внутренний объем пор. Объем растворителя между зернами геля – V м называют промежуточным, транспортным или мертвым объемом, а внутренний объем пор – V п рассматривается как объект стационарной фазы. Когда в колонку вводят пробу, содержащую несколько типов ионов или молекул с разными размерами, то они стремятся из подвижной фазы проникнуть внутрь пор. Такое проникновение обусловлено энтропийным распределением, поскольку концентрация молекул разделяемых веществ в наружном растворе оказывается выше, чем в поровом пространстве. Но оно становится возможным только в том случае, если размеры ионов или молекул меньше диаметра пор.


Рис 5 Общий вид градуировочной кривой в гель-хроматографии:

1 – область исключения, где все молекулы имеют размер больше m 2 ;

2 – область проникновения или разделения, где размеры молекул лежат в интервале от m 1 и m 2 ;

3 - область, где происходит полное проникновение молекул с размерами менее m 1.

В процессе гель-хроматографирования могут быть отделены крупные молекулы, которые гелем не сорбируются, так как их размеры превышают размеры пор, от мелких, которые проникают в поры, а затем могут быть элюированы. Проводятся и более тонкие разделения, так как размеры пор можно регулировать, изменяя, например, состав растворителя и, как следствие, набухаемость геля. Гель-хроматография может быть выполнена в колоночном варианте и в тонкослойном.

Применяемые на практике гели обычно подразделяют на мягкие, полужесткие и жесткие. Мягкими гелями являются высокомолекулярные органические соединения с незначительным числом поперечных связей. Фактор емкости, равный отношению объема растворителя внутри геля к его объему вне геля, у них равен 3. При набухании они значительно увеличивают собственный объем. Это сефадексы или декстрановые гели, агарочные гели, крахмал и др. Они применяются для разделения смесей низкомолекулярных веществ, часто в тонкослойном варианте. Хроматографирование на мягких гелях называют гель - фильтрацией.

Полужесткие гели получают путем полимеризации. Большое распространение получили стирогели - продукты сополимеризации стирола и дивинилбензола с большим числом поперечных связей. Фактор емкости полужестких гелей лежит в пределах 0,8...1,2, их объем при набухании увеличивается не очень значительно (в 1,2...1,8 раза). Хроматографирование на полужестких гелях называют гель-проникающей хроматографией.

К жестким гелям относят силикагели и часто пористые стекла, хотя они и не являются гелями. Жесткие гели имеют небольшой фактор емкости (0,8...1,1) и фиксированный размер пор. Эти материалы используют в гель-хроматографии при высоком давлении.

Растворители гель-хроматографии должны растворять все компоненты смеси, смачивать поверхность геля и не адсорбироваться на ней.

Практическое применение гель-хроматографии связано, главным образом, с разделением смеси высокомолекулярных соединений, хотя нередко они используются для разделения и низкомолекулярных, так как разделение этим методом возможно при комнатной температуре.

6. Высокоэффективная жидкостная хроматография (ВЖКХ)

Высокоэффективная жидкостная хроматография – наиболее эффективный метод анализа органических проб сложного состава. Процесс анализа пробы делится на 2 этапа:

· разделение пробы на составляющие компоненты;

· детектирование и измерение содержания каждого компонента.


Задача разделения решается при помощи хроматографической колонки, которая представляет собой трубку, заполненную сорбентом. При проведении анализа через хроматографическую колонку подают жидкость (элюент) определенного состава с постоянной скоростью. В этот поток вводят точно отмеренную дозу пробы.

Компоненты пробы, введенной в хроматографическую колонку, из-за их разного сродства к сорбенту колонки двигаются по ней с различными скоростями и достигают детектора последовательно в разные моменты времени.

Таким образом, хроматографическая колонка отвечает за селективность и эффективность разделения компонентов. Подбирая различные типы колонок можно управлять степенью разделения анализируемых веществ. Идентификация соединений осуществляется по их времени удерживания. Количественное определение каждого из компонентов рассчитывают, исходя из величины аналитического сигнала, измеренного с помощью детектора, подключенного к выходу хроматографической колонки.

При анализе соединений с низкими ПДК (биогенные амины, полиароматические углеводороды, гормоны, токсины) из-за трудоемкости подготовки реальных проб особенно важной характеристикой становится чувствительность и селективность метода. Применение флуориметрического детектора позволяет не только снизить пределы обнаружения, но и селективно выделить анализируемые вещества на фоне матричных и сопутствующих компонентов пробы.

Метод ВЭЖХ применяется в санитарно-гигиенических исследованиях, экологии, медицине, фармацевтике, нефтехимии, криминалистике, для контроля качества и сертификации продукции.

В качестве блока подачи элюента используется насос "Питон" шприцевого типа, который имеет следующие особенности:

· отсутствие пульсаций давления при подаче растворителя;

· большой диапазон объемных скоростей потока;

· большой объем камеры насоса;

· расширяемость (возможность сочетать несколько блоков для создания градиентной системы).

В хроматографической системе могут использоваться различные типы детекторов, например, "Флюорат-02-2М" (спектральная селекция осуществляется фильтрами) или "Флюорат-02 Панорама" (спектральная селекция осуществляется монохроматорами).

7. Применение

Жидкостная хроматография важнейший физико-химический метод исследования в химии, биологии, биохимии, медицине, биотехнологии. Ее используют для анализа, разделения, очистки и выделения аминокислот, пептидов, белков, ферментов, вирусов, нуклеотидов, нуклеиновых кислот, углеводов, липидов, гормонов и т. д.; изучения процессов метаболизма в живых организмах лекарственных препаратов; диагностики в медицине; анализа продуктов химического и нефтехимического синтеза, полупродуктов, красителей, топлив, смазок, нефтей, сточных вод; изучения изотерм сорбции из раствора, кинетики и селективности хим. процессов.

В химии высокомолекулярных соединений и в производстве полимеров с помощью жидкостной хроматографии анализируют качество мономеров, изучают молекулярно-массовое распределение и распределение по типам функциональности олигомеров и полимеров, что необходимо для контроля продукции. Жидкостную хроматографию используют также в парфюмерии, пищевой промышленности, для анализа загрязнений окружающей среды, в криминалистике.


Заключение

Начало ХХ века ознаменовалось открытием хроматографического метода анализа, обогатившего и объединившего различные области науки, без которых немыслим научный прогресс XXI века. Внедрение хроматографических методов, и в первую очередь жидкостной хроматографии, в медицину позволило решить многие жизненно важные проблемы: исследование степени чистоты и стабильности лекарственных средств, препаративное выделение индивидуальных гормональных препаратов (например, инсулина, интерферона), количественное определение в биологических объектах нейромедиаторов: адреналина, норадреналина. С наличием этих веществ в живом организме связывают способность к запоминанию, обучению, приобретению каких-либо навыков. Идентификация методами ВЭЖХ стероидов, аминокислот, аминов и других соединений оказалась крайне важной при диагностике некоторых наследственных заболеваний: инфаркта миокарда, диабета, различных заболеваний нервной системы. Одной из актуальных задач клинической медицины для экспресс-диагностики является проведение так называемого профильного анализа компонентов биологического объекта, осуществляемого методами жидкостной хроматографии, что позволяет не проводить идентификацию каждого пика, а сопоставлять профили хроматограмм для заключения о норме или патологии. Обработка огромного массива информации осуществляется только с использованием ЭВМ (метод получил название "метод распознавания образов").


Список литературы

1. Васильев В. П. Аналитическая химия, В 2 кн. Кн. 2 Физико-химические методы анализа: Учеб. для студ. вузов, обучающихся по химико-технол. спец. – 4-е изд., стереотип. – М.: Дрофа, 2004 – 384 с.

2. Москвин Л.Н., Царицына Л.Г. Методы разделения и концентрирования в аналитической химии. – Л.: Химия, 1991. – 256 с.

3. http://bibliofond.ru/view.aspx?id=43468

4. http://ru.wikipedia.org/wiki/Бумажная_хроматография

5. http://referats.qip.ru/referats/preview/93743/6

6. http://www.curemed.ru/medarticle/articles/12186.htm

7. http://www.lumex.ru/method.php?id=16

8. http://www.xumuk.ru/encyklopedia/1544.html

9. http://www.pereplet.ru/obrazovanie/stsoros/1110.html

Эксклюзионная хроматография

Гель-фильтрация или эксклюзионная хроматография (ситовая, гель-проникающая, гель-фильтрационная хроматография) - разновидность хроматографии , в ходе которой молекулы веществ разделяются по размеру за счёт их разной способности проникать в поры неподвижной фазы. При этом первыми выходят из колонки наиболее крупные молекулы (бо́льшей молекулярной массы), способные проникать в минимальное число пор стационарной фазы. Последними выходят вещества с малыми размерами молекул, свободно проникающие в поры. В отличие от адсорбционной хроматографии , при гель-фильтрации стационарная фаза остается химически инертной и с разделяемыми веществами не взаимодействует.

Принцип

В колонку вносят раствор образца, объём которого является лимитирующим для качества хроматографии. Для аналитических разделений он не должен превышать 0,1 % от CV (общего объёма колонки), а для препаративной очистки он должен быть не выше 8-10 % от CV. Колонка упакована порошком, частицы или гранулы которого имеют поры определенного диаметра. Высокомолекулярные вещества, не входящие в поры, проходят между гранулами, поэтому их объём удержания равен объёму колонки за вычетом объёма стационарной фазы (так называемый, свободный объем ). Они элюируются первыми. Молекулы средних размеров помещаются в поры сорбента, но не полностью. Поэтому их объём удержания несколько выше свободного объёма. Они элюируется вторыми. Самые мелкие молекулы свободно входят в поры вместе с молекулами растворителя. Поэтому их объём удержания в колонке намного выше свободного и приближается к общему объёму колонки (то есть 100 % CV). Они элюируются последними.

Сорбенты

Гель - гетерогенная система, в которой подвижная фаза (обычно водная) всегда находится внутри пор стационарной или твердой фазы, называемой гелевой матрицей.

Низкого давления

  • декстран,
  • сефадекс,
  • сефакрил,
  • сефароза,
  • супердекс.

Высокого давления

  • полиметакрилат,

Wikimedia Foundation . 2010 .

Смотреть что такое "Эксклюзионная хроматография" в других словарях:

    - (ситовая хро матография), жидкостная хроматография, основанная наразл. способности молекул разного размера проникать в поры неионогенного геля, к рый служит неподвижной фазой. Различают гель проникающую хроматографию (элюент орг. р ритель) и гель … Химическая энциклопедия

    эксклюзионная хроматография - ekskliuzinė chromatografija statusas T sritis chemija apibrėžtis Skysčių chromatografija, pagrįsta medžiagos molekulių pasiskirstymu tarp porose esančio ir judančio tirpiklio. atitikmenys: angl. exclusion chromatography rus. эксклюзионная… … Chemijos terminų aiškinamasis žodynas

    - (от др. греч … Википедия

    - (от греч. chroma, родительный падеж chromatos цвет, краска и...графия физико химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами неподвижной и подвижной (элюент), протекающей через… … Большая советская энциклопедия

    Вид хрома тографии, в к рой подвижной фазой служитжидкость (элюент), а неподвижной та. сорбент, тв. носитель с нанесённой на его поверхность жидкостью или гель. Осуществляют в колонке, заполненной сорбентом (колоночная хроматография), на плоской… … Естествознание. Энциклопедический словарь

    Это хроматография, в которой подвижной фазой является жидкость. Жидкостная хроматография разделяется на жидкостно адсорбционную (разделение соединений происходит за счет их различной способности адсорбироваться и десорбироваться с поверхности… … Википедия

    гель проникающая хроматография - Gel Permeation Chromatography Гель проникающая хроматография (эксклюзионная, ситовая, гель фильтрационная) Вариант жидкостной хроматографии … Толковый англо-русский словарь по нанотехнологии. - М.

    Типичная установка для ручной колоночной хроматографии. Стеклянная колонка, снабженная внизу краном для регулирования скорости процесса, набита твердой фазой (белого цвета), резервуар вверху наполнен жидким элюентом, в верхней части твердой фазы… … Википедия

    Приборы, измеряющие содержание (концентрацию) одного или неск. компонентов в жидких средах; Ж. а. часто называют также приборы для определения св в жидкостей (вискозиметры, плотномеры и др.). Различают Ж. а. лабораторные и промышленные (для… … Химическая энциклопедия

    См. Эксклюзионная хроматография … Химическая энциклопедия

Описание

Совместно с немецкой компанией Polymer Standards Service (PSS) — одним из ведущих производителей материалов и оборудования для гель-проникающей хроматографии (ГПХ, GPC) или, по-другому, эксклюзионной хроматографии (SEC) — мы предлагаем комплексные решения для определения средних значений молекулярной массы полимеров (природных, синтетических, биополимеров), молекулярно-массового распределения и характеристик полимерных макромолекул в растворе. В данном методе разделение аналита происходит не за счет адсорбционных взаимодействий с неподвижной фазой, а исключительно по величине гидродинамического радиуса макромолекул.

Для детектирования разделенных по молекулярной массе компонентов всегда используется как минимум один концентрационный детектор (традиционные для ВЭЖХ рефрактометрический и спектрофотометрический , детектор по испарительному светорассеянию), а также специальные детекторы для анализа полимеров: вискозиметрический , детектор по лазерному светорассеянию . В сочетании с концентрационным данные детекторы позволяют определять абсолютную молекулярную массу, конформацию макромолекул в растворе, радиус инерции, гидродинамический радиус, степень разветвленности, константы уравнения Марка-Куна-Хаувинка, вириальные коэффициенты. При наличии калибровочных зависимостей данная система позволяет получить исчерпывающую информацию о макромолекулярных объектах и их поведении в растворах всего за один анализ (~15 мин), в то время как оценка данных характеристик традиционными методами составляет несколько дней.

Для обработки результатов измерений необходимо использовать специальное программное обеспечение. Мы предлагаем гибкие модульные ВЭЖХ системы для гель-проникающей хроматографии (GPC), включающие модули Prominence (насосы , термостат колонок , автодозаторы , рефрактометрический детектор) и специфические модули от компании Polymer Standards Service (PSS) — авторитетного эксперта в области ВЭЖХ анализа полимеров. Для расчетов результатов анализа возможно использование как программного обеспечения Shimadzu GPC Option, интегрированного в стандартную программу LabSolution LC, так и использование программных продуктов PSS — WinGPC SW, поддерживающих специальные детекторы.

Для работы с агрессивными по отношению к традиционно используемых капиллярам и фитингам подвижными фазами (гексафторизопропанол, тетрагидрофуран) возможна комплектация ВЭЖХ систем специальным дегазатором, насосами и автодозатором, компоненты которых устойчивы к указанным растворителям.

Базовые системы для ГПХ

Базовая ВЭЖХ система для ГПХ

Базовая ВЭЖХ система для ГПХ может быть сконфигурирована на базе блоков модели LC-20 Prominence с одним из концентрационных детекторов (спектрофотометрический/диодная матрица SPD-20A/SPD-M20A для поглощающих УФ-излучение полимеров, универсальными рефрактометрическим RID-20A и детектором испарительного светорассеяния ELSD-LT II). Данная система, при наличии подходящих стандартов и калибровочных зависимостей, позволяет определять величину относительной молекулярной массы полимеров, а также оценивать гидродинамические размеры макромолекул в растворе.

Технические характеристики основных модулей
Насос LC-20AD
Тип насоса Двойной параллельный микроплунжерный механизм
Ёмкость камер плунжера 10 мкл
Диапазон скорости потока элюента 0,0001 - 10 мл/мин
Максимальное давление 40 МПа
Точность установки потока 1% или 0,5 мкл (в зависимости от того, что лучше)
Пульсация 0,1 МПа (для воды при 1,0 мл/мин и 7 МПа)
Режим работы постоянный поток, постоянное давление
Насосы можно укомплектовать дополнительным устройством для автоматической промывки плунжера. Насосы оборудованы датчиком течи. Материал плунжера насоса — стойкий к агрессивным средам (сапфир).
Рефрактометрический детектор RID-20A
Источник излучения Вольфрамовая лампа, время работы 20000 час
Диапазон показателя преломления (RIU) 1,00 - 1,75
Термостатирование оптического блока 30 - 60С° с двойным контролем температуры оптической системы
Рабочий диапазон скоростей потока Возможность работы в широком диапазоне использования (от аналитического режима до препаративной хроматографии) без замены измерительной ячейки: от 0,0001 до 20 мл/мин в аналитическом режиме; до 150 мл/мин в препаративном режиме
Шум 2,5×10 -9 RIU
Дрейф 1×7 -7 RIU/час
Диапазон линейности 0,01-500×10 -6 в аналитическом режиме
1,0-5000×10 -6 в препаративном режиме
Переключатель потоковых линий соленоидный вентиль
Макс. рабочее давление 2 МПа (20 кгс/см²)
Объем ячейки 9 мкл
Настройка нуля оптический баланс (оптический ноль);
авто-ноль, тонкая настройка нуля сдвигом базовой линии
Термостат колонок с принудительной конвекцией воздуха СТО-20А
Диапазон контролируемых температур от 10C° выше комнатной до 85C°
Точность контроля температуры 0,1C°
Внутренний объем термостата 220×365×95 мм (7,6 л)
Вместимость термостата 6 колонок; кроме колонок могут быть установлены 2 ручных инжектора, градиентный смеситель, два переключающих крана высокого давления (6-ти или 7-ми портовых), кондуктометрическая ячейка
Возможности линейное программирование температуры; отслеживание и сохранение в файл изменений параметров колонки, количества анализов, количества прошедшей подвижной фазы (при установке опционного устройства CMD)
Контроль рабочих параметров датчик утечки растворителя; система защиты от перегрева

Детектор светорассеяния

Детектор многоуглового светорассеяния SLD7100 MALLS (PSS)

Детектор многоуглового светорассеяния SLD7100 MALLS (PSS) позволяет производить измерения статического светорассеяния одновременно под семью углами (35, 50, 75, 90, 105, 130, 145°) и определять абсолютные величины молекулярных масс, истинные параметры молекулярно-массового распределения, оценивать размеры и конформацию макромолекул в растворе . Данный детектор устраняет необходимость использования каких-либо стандартов, а также может служить в качестве емкостного инструмента (без ВЭЖХ системы) без каких-либо дополнительных модификаций.

Вискозиметрический детектор (PSS, Германия)

Вискозиметрический детектор DVD1260 (PSS)

Вискозиметрический детектор DVD1260 (PSS) при использовании в составе ВЭЖХ системы LC-20 Prominence позволяет определять средние молекулярные массы и параметры молекулярно-массового распределения , используя метод универсальной калибровки, незаменимый для макромолекул со сложной и глобулярной архитектурой, а также характеристическую вязкость, константы уравнения Марка-Куна-Хаувинка, степень разветвления, вириальные коэффициенты и конформацию макромолекул в растворе , исходя из определенных моделей, уже заложенных в программное обеспечение. Уникальная измерительная ячейка детектора представляет собой четырехплечевой асимметричный капиллярный мост, не содержащий, в отличие от всех имеющихся на рынке аналогов, ячеек запаздывания (hold-up columns) — в сравнительном контуре встроен специальный разбавительный резервуар, что позволяет сократить время анализа по крайней мере вдвое и избежать появления отрицательных системных пиков. Погрешность поддержания температуры в ячейке составляет менее 0,01 °C , что является первоочередным критичным фактором в вискозиметрическом анализе.

Технические характеристики:
Питание От 110 до 260 В; 50/60 Гц; 100 ВА
Диапазон разницы давлений (DP) -0,6 кПа — 10,0 кПа
Диапазон давления на входе (IP) 0-150 кПа
Объем измерительной ячейки 15 мкл
Разбавительный компенсационный объем (резервуар) 70 мл
Скорость сдвига (1,0 мл/мин) < 2700 с -1
Уровень шума 0,2 Па, сигнал разности давлений, 5 °С
Аналоговый выход 1,0 В / 10 кПа FSD разность давлений
1,0 В / 200 кПа FSD давление на входе
Общий объем детектора Около 72 мл (включая резервуар)
Макс. скорость потока 1,5 мл/мин
Точность задания температуры ±0,5 °C
Стабильность температуры Не хуже 0,01 °C
Цифровой интерфейс RS-232C, USB, Ethernet
Скорость передачи данных (бод) 1200 - 115200
Цифровые входы Промывка, Обнуление, Инжекция, Ошибка
Цифровые выходы Инжекция, Ошибка
Масса Около 4 кг
Размеры (Ш, В, Г) 160×175×640 мм

Аксессуары


Для работы в режиме ГПХ и построения калибровочных зависимостей мы предлагаем широкий выбор колонок для ГПХ, заполненных гелями (неподвижная фаза) и элюентами самой разной химической природы (полярных и неполярных), предназначенных для анализа как высокомолекулярных полимеров, так и олигомеров, а также стандартных полимерных объектов .

Колонки для гель-проникающей хроматографии (GPC, SEC):

  • для любых органических элюентов: PSS SDV, GRAM, PFG, POLEFIN (до 200 °C);
  • для водных элюентов: PSS SUPREMA, NOVEMA, MCX PROTEEMA;
  • колонки с монодисперсным распределением пор по размерам либо смешанного типа для получения абсолютно линейных калибровок;
  • для определения низких и высоких значений ММ;
  • готовые наборы колонок для расширения диапазона определяемых молекулярных масс;
  • для синтетических и биополимеров;
  • решения от микро ГПХ до препаративных систем;
  • колонки для быстрых разделений.

Колонки могут поставляться в любом выбранном вами элюенте.

Стандарты для гель-проникающей хроматографии (GPC, SEC):

  • индивидуальные стандартные образцы и готовые наборы стандартов;
  • растворимые в органических растворителях:
    • полистирол
    • поли(α-метилстирол)
    • полиметилметакрилат
    • поли(н-бутилметакрилат)
    • поли(трет-бутилметакрилат)
    • полибутадиен-1,4
    • полиизопрен-1,4
    • полиэтилен
    • поли(2-винилпиридин)
    • полидиметилсилоксан
    • полиэтилентерефталат
    • полиизобутилен
    • полилактид
  • растворимые в водных системах:
    • декстран
    • пуллулан
    • гидроксиэтилированный крахмал
    • полиэтиленгликоли и полиэтиленоксиды
    • Na-соль полиметакриловой кислоты
    • Na-соль полиакриловой кислоты
    • Na-соль поли(п-стиролсульфокислоты)
    • Поливиниловый спирт
    • протеины
  • MALDI стандарты, наборы для валидации детекторов по светорассеянию (LSD) и вискозиметрии;
  • дейтерированные полимеры;
  • полимеры и стандарты, изготавливаемые под заказ.